Suppr超能文献

同时进行功能性近红外光谱(fNIRS)-功能磁共振成像(fMRI)测量,以验证一种使用多距离光极分离深和浅层 fNIRS 信号的方法。

Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes.

机构信息

Hitachi, Ltd. , Central Research Laboratory, Hatoyama, Saitama 350-0395, Japan.

The University of Tokyo , Graduate School of Medicine, Department of Youth Mental Health, Bunkyo-ku, Tokyo 113-8655, Japan.

出版信息

Neurophotonics. 2015 Jan;2(1):015003. doi: 10.1117/1.NPh.2.1.015003. Epub 2015 Feb 4.

Abstract

It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level-dependent signals was analyzed. A three-way analysis of variance ([Formula: see text]) indicated that the main effect of fNIRS signal depth on the correlation is significant [[Formula: see text], [Formula: see text]]. This result indicates that the MD-ICA method successfully separates fNIRS signals into spatially deep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method.

摘要

已有研究报道称,功能性近红外光谱(fNIRS)信号可能会受到脑外因素的干扰。为解决这一问题,许多研究者提出了采用多距离分离的算法,但这些算法的空间分离性能很少通过 fNIRS 与功能磁共振成像(fMRI)的同步测量来验证。我们之前提出了一种区分 fNIRS 信号中深层和浅层贡献的方法,称为多距离独立成分分析(MD-ICA)方法。在这项研究中,为了从空间方面验证 MD-ICA 方法,我们在三项任务中同时对 12 名健康成年男性进行了多距离 fNIRS、fMRI 和激光多普勒血流测量。使用 MD-ICA 方法将 fNIRS 信号分离为深层和浅层信号,并分析分离后的 fNIRS 信号的波形与灰质血氧水平依赖信号之间的相关性。三因素方差分析([Formula: see text])表明,fNIRS 信号深度对相关性的主效应显著 [[Formula: see text], [Formula: see text]]。这一结果表明 MD-ICA 方法可以成功地将 fNIRS 信号分离为空间上的深层和浅层信号,并且该方法可以提高 fNIRS 信号的准确性和可靠性。

相似文献

4
Optimized multimodal functional magnetic resonance imaging/near-infrared spectroscopy probe for ultrahigh-resolution mapping.
Neurophotonics. 2015 Oct;2(4):045004. doi: 10.1117/1.NPh.2.4.045004. Epub 2015 Dec 10.
5
Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis.
J Neural Eng. 2020 Oct 15;17(5):056025. doi: 10.1088/1741-2552/abb417.
6
Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method.
Neuroimage. 2014 Jul 15;95:69-79. doi: 10.1016/j.neuroimage.2014.02.035. Epub 2014 Mar 19.
7
Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.
Neuroimage. 2014 Feb 15;87:490-504. doi: 10.1016/j.neuroimage.2013.10.024. Epub 2013 Oct 19.
8
Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.
Brain Topogr. 2016 Sep;29(5):645-60. doi: 10.1007/s10548-016-0507-1. Epub 2016 Jul 20.
9
Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains.
Front Hum Neurosci. 2013 Oct 16;7:676. doi: 10.3389/fnhum.2013.00676. eCollection 2013.

引用本文的文献

1
Applications and advances of combined fMRI-fNIRs techniques in brain functional research.
Front Neurol. 2025 Mar 18;16:1542075. doi: 10.3389/fneur.2025.1542075. eCollection 2025.
2
Using multivariate partial least squares on fNIRS data to examine load-dependent brain-behaviour relationships in aging.
PLoS One. 2024 Oct 14;19(10):e0312109. doi: 10.1371/journal.pone.0312109. eCollection 2024.
5
Research progress of functional near-infrared spectroscopy in patients with psychiatric disorders.
Forensic Sci Res. 2020 May 5;6(2):141-147. doi: 10.1080/20961790.2020.1720901. eCollection 2021.
10
False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward.
Neurophotonics. 2016 Jul;3(3):031405. doi: 10.1117/1.NPh.3.3.031405. Epub 2016 Mar 9.

本文引用的文献

2
Mapping distributed brain function and networks with diffuse optical tomography.
Nat Photonics. 2014 Jun;8(6):448-454. doi: 10.1038/nphoton.2014.107.
3
Influence of skin blood flow and source-detector distance on near-infrared spectroscopy-determined cerebral oxygenation in humans.
Clin Physiol Funct Imaging. 2015 May;35(3):237-44. doi: 10.1111/cpf.12156. Epub 2014 Apr 20.
4
Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method.
Neuroimage. 2014 Jul 15;95:69-79. doi: 10.1016/j.neuroimage.2014.02.035. Epub 2014 Mar 19.
5
Twenty years of functional near-infrared spectroscopy: introduction for the special issue.
Neuroimage. 2014 Jan 15;85 Pt 1:1-5. doi: 10.1016/j.neuroimage.2013.11.033.
6
Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.
Neuroimage. 2014 Feb 15;87:490-504. doi: 10.1016/j.neuroimage.2013.10.024. Epub 2013 Oct 19.
8
A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task.
Neuroimage. 2013 Dec;83:158-73. doi: 10.1016/j.neuroimage.2013.06.043. Epub 2013 Jun 21.
9
A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy.
Neuroimage. 2014 Jan 15;85 Pt 1:354-62. doi: 10.1016/j.neuroimage.2013.06.023. Epub 2013 Jun 14.
10
Neuroimaging-aided differential diagnosis of the depressive state.
Neuroimage. 2014 Jan 15;85 Pt 1:498-507. doi: 10.1016/j.neuroimage.2013.05.126. Epub 2013 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验