Suppr超能文献

在数字眼底图像中对视盘进行准确可靠的分割。

Accurate and reliable segmentation of the optic disc in digital fundus images.

作者信息

Giachetti Andrea, Ballerini Lucia, Trucco Emanuele

机构信息

Università di Verona , Dipartimento di Informatica, Strada Le Grazie 15 Verona 37134, Italy.

University of Dundee , VAMPIRE, School of Computing, School of Computing, Queen Mother Building, Balfour Street, Dundee DD1 4HN, United Kingdom.

出版信息

J Med Imaging (Bellingham). 2014 Jul;1(2):024001. doi: 10.1117/1.JMI.1.2.024001. Epub 2014 Jul 14.

Abstract

We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE).

摘要

我们描述了一种用于在数字眼底图像中检测视盘并进行精确自动分割的完整流程。该过程可分离血管信息并对去除血管的图像进行精确修复,基于对称性对视盘进行定位,并使用与修复图像和血管掩码相关的信息,在不断提高的分辨率下拟合逐渐复杂的轮廓模型。在由专家标注并部分带有质量标签分级的大量健康和病理眼睛图像数据集上进行的验证实验,证明了所提出方法的良好性能。该方法在检测视盘和追踪其轮廓方面比文献中介绍并在相同数据上测试的其他系统表现更好。所获得的轮廓掩码中的平均误差与操作者之间的误差相当接近,适用于实际应用。视盘分割流程目前已集成到一个完整的软件套件中,用于从眼底相机图像半自动量化视网膜血管特性(VAMPIRE)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验