Suppr超能文献

产溶剂梭菌中的磷酸转移酶系统

The Phosphotransferase System in Solventogenic Clostridia.

作者信息

Mitchell Wilfrid J

机构信息

School of Life Sciences, Heriot-Watt University, Edinburgh, UK.

出版信息

J Mol Microbiol Biotechnol. 2015;25(2-3):129-42. doi: 10.1159/000375125. Epub 2015 Jul 9.

Abstract

The acetone-butanol-ethanol fermentation employing solventogenic clostridia was a major industrial process during the 20th century, but declined for economic reasons. In recent times, interest in the process has been revived due to the perceived potential of butanol as a superior biofuel. Redevelopment of an efficient fermentation process will require a detailed understanding of the physiology of carbohydrate utilization by the bacteria. Genome sequences have revealed that, as in other anaerobes, the phosphotransferase system (PTS) and associated regulatory functions are likely to play an important role in sugar uptake and its regulation. The genomes of Clostridium acetobutylicum and C. beijerinckii encode 13 and 43 phosphotransferases, respectively. Characterization of clostridial phosphotransferases has demonstrated that they are involved in the uptake and phosphorylation of hexoses, hexose derivatives and disaccharides, although the functions of many systems remain to be determined. Glucose is a dominant sugar which represses the utilization of other carbon sources, including the non-PTS pentose sugars xylose and arabinose, by the clostridia. Targeting of the CcpA-dependent mechanism of carbon catabolite repression has been shown to be an effective strategy for reducing the repressive effects of glucose, indicating potential for developing strains with improved fermentation performance.

摘要

利用产溶剂梭菌进行丙酮-丁醇-乙醇发酵在20世纪是一个主要的工业过程,但由于经济原因而衰落。近年来,由于丁醇被认为有作为优质生物燃料的潜力,人们对该过程的兴趣得以恢复。高效发酵过程的重新开发将需要详细了解细菌利用碳水化合物的生理学。基因组序列显示,与其他厌氧菌一样,磷酸转移酶系统(PTS)及相关调节功能可能在糖摄取及其调节中发挥重要作用。丙酮丁醇梭菌和拜氏梭菌的基因组分别编码13种和43种磷酸转移酶。对梭菌磷酸转移酶的表征表明,它们参与己糖、己糖衍生物和二糖的摄取和磷酸化,尽管许多系统的功能仍有待确定。葡萄糖是一种主要糖类,它会抑制梭菌对其他碳源的利用,包括非PTS戊糖木糖和阿拉伯糖。针对依赖CcpA的碳分解代谢物阻遏机制已被证明是减少葡萄糖抑制作用的有效策略,这表明开发具有改进发酵性能菌株的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验