Department of Fermentation Chemistry and Bioengineering, Institute of Chemical Technology Prague, Technicka 5, CZ16628 Prague 6, Czech Republic.
Biotechnol Adv. 2013 Jan-Feb;31(1):58-67. doi: 10.1016/j.biotechadv.2012.01.010. Epub 2012 Jan 28.
This review emphasises the fact that studies of acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia cannot be limited to research on the strain Clostridium acetobutylicum ATCC 824. Various 1-butanol producing species of the genus Clostridium, which differ in their patterns of product formation and abilities to ferment particular carbohydrates or glycerol, are described. Special attention is devoted to species and strains that do not produce acetone naturally and to the utilisation of lactose, inulin, glycerol and mixtures of pentose and hexose carbohydrates. Furthermore, process-mapping tools based on different principles, including flow cytometry, DNA microarray analysis, mass spectrometry, Raman microscopy, FT-IR spectroscopy and anisotropy of electrical polarisability, which might facilitate fermentation control and a deeper understanding of ABE fermentation, are introduced. At present, the methods with the greatest potential are flow cytometry and transcriptome analysis. Flow cytometry can be used to visualise and capture cells within clostridial populations as they progress through the normal cell cycle, in which symmetric and asymmetric cell division phases alternate. Cell viability of a population of Clostridium pasteurianum NRRL B-598 was determined by flow cytometry. Transcriptome analysis has been used in various studies including the detection of genes expressed in solventogenic phase, at sporulation, in the stress response, to compare expression patterns of different strains or parent and mutant strains, for studies of catabolite repression, and for the detection of genes involved in the transport and metabolism of 11 different carbohydrates. Interestingly, the results of transcriptome analysis also challenge our earlier understanding of the role of the Spo0A regulator in initiation of solventogenesis in C. acetobutylicum ATCC 824. Lastly, the review describes other significant recent discoveries, including the deleterious effects of intracellular formic acid accumulation in C. acetobutylicum DSM 1731 cells on the metabolic switch from acidogenesis to solventogenesis and the development of a high-cell density continuous system using Clostridium saccharoperbutylacetonicum N1-4, in which 1-butanol productivity of 7.99 g/L/h was reached.
这篇综述强调了这样一个事实,即溶剂梭菌丙酮丁醇乙醇(ABE)发酵的研究不能仅限于对梭菌属丙酮丁醇梭菌 ATCC 824 的研究。本文描述了各种产 1-丁醇的梭菌属物种,它们在产物形成模式和发酵特定碳水化合物或甘油的能力上有所不同。特别关注的是那些天然不产生丙酮的物种和菌株,以及利用乳糖、菊粉、甘油和戊糖和己糖混合物。此外,还介绍了基于不同原理的过程映射工具,包括流式细胞术、DNA 微阵列分析、质谱、拉曼显微镜、FT-IR 光谱和电各向异性极化率,这些工具可能有助于发酵控制和更深入地了解 ABE 发酵。目前,最具潜力的方法是流式细胞术和转录组分析。流式细胞术可用于观察和捕获梭菌种群中细胞在正常细胞周期中的进展,其中对称和不对称细胞分裂阶段交替出现。通过流式细胞术测定了 Clostridium pasteurianum NRRL B-598 种群的细胞存活率。转录组分析已用于各种研究,包括检测溶剂形成期、孢子形成期、应激反应中表达的基因,比较不同菌株或亲本和突变菌株的表达模式,用于研究分解代谢物阻遏,以及检测与 11 种不同碳水化合物的运输和代谢相关的基因。有趣的是,转录组分析的结果也挑战了我们之前对 Spo0A 调节剂在 C. acetobutylicum ATCC 824 溶剂形成起始中作用的理解。最后,综述描述了其他重要的最新发现,包括细胞内甲酸积累对 C. acetobutylicum DSM 1731 细胞从酸发酵到溶剂发酵代谢转换的有害影响,以及使用 Clostridium saccharoperbutylacetonicum N1-4 开发高细胞密度连续系统,该系统达到了 7.99 g/L/h 的 1-丁醇生产率。