Suppr超能文献

小鼠中Cln1基因的破坏揭示了两种最致命的儿童期神经退行性溶酶体贮积症之间的共同致病联系。

Cln1 gene disruption in mice reveals a common pathogenic link between two of the most lethal childhood neurodegenerative lysosomal storage disorders.

作者信息

Chandra Goutam, Bagh Maria B, Peng Shiyong, Saha Arjun, Sarkar Chinmoy, Moralle Matthew, Zhang Zhongjian, Mukherjee Anil B

机构信息

Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA.

Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA

出版信息

Hum Mol Genet. 2015 Oct 1;24(19):5416-32. doi: 10.1093/hmg/ddv266. Epub 2015 Jul 9.

Abstract

Neurodegeneration is a devastating manifestation in the majority of >50 lysosomal storage disorders (LSDs). Neuronal ceroid lipofuscinoses (NCLs) are the most common childhood neurodegenerative LSDs. Mutations in 13 different genes (called CLNs) underlie various types of NCLs, of which the infantile NCL (INCL) and congenital NCL (CNCL) are the most lethal. Although inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) cause INCL, those in the CLN10 gene encoding cathepsin D (CD) underlie CNCL. PPT1 is a lysosomal thioesterase that cleaves the thioester linkage in S-acylated proteins required for their degradation by lysosomal hydrolases like CD. Thus, PPT1 deficiency causes lysosomal accumulation of these lipidated proteins (major constituents of ceroid) leading to INCL. We sought to determine whether there is a common pathogenic link between INCL and CNCL. Using biochemical, histological and confocal microscopic analyses of brain tissues and cells from Cln1(-/-) mice that mimic INCL, we uncovered that Cln10/CD is overexpressed. Although synthesized in the endoplasmic reticulum, the CD-precursor protein (pro-CD) is transported through endosome to the lysosome where it is proteolytically processed to enzymatically active-CD. We found that despite Cln10 overexpression, the maturation of pro-CD to enzymatically active-CD in lysosome was disrupted. This defect impaired lysosomal degradative function causing accumulation of undegraded cargo in lysosome leading to INCL. Notably, treatment of intact Cln1(-/-) mice as well as cultured brain cells derived from these animals with a thioesterase-mimetic small molecule, N-tert-butyl-hydroxylamine, ameliorated the CD-processing defect. Our findings are significant in that they define a pathway in which Cln1 mutations disrupt the maturation of a major degradative enzyme in lysosome contributing to neuropathology in INCL and suggest that lysosomal CD deficiency is a common pathogenic link between INCL and CNCL.

摘要

神经退行性变是大多数50多种溶酶体贮积症(LSD)中的一种破坏性表现。神经元蜡样脂褐质沉积症(NCL)是最常见的儿童期神经退行性LSD。13种不同基因(称为CLNs)的突变是各种类型NCL的基础,其中婴儿型NCL(INCL)和先天性NCL(CNCL)最为致命。虽然编码棕榈酰蛋白硫酯酶-1(PPT1)的CLN1基因中的失活突变导致INCL,但编码组织蛋白酶D(CD)的CLN10基因中的突变是CNCL的基础。PPT1是一种溶酶体硫酯酶,可切割S-酰化蛋白中的硫酯键,这些蛋白需要被CD等溶酶体水解酶降解。因此,PPT1缺乏会导致这些脂化蛋白(蜡样质的主要成分)在溶酶体中积累,从而导致INCL。我们试图确定INCL和CNCL之间是否存在共同的致病联系。通过对模拟INCL的Cln1(-/-)小鼠的脑组织和细胞进行生化、组织学和共聚焦显微镜分析,我们发现Cln10/CD过度表达。虽然CD前体蛋白(pro-CD)在内质网中合成,但它通过内体运输到溶酶体,在那里被蛋白水解加工成具有酶活性的CD。我们发现,尽管Cln10过度表达,但溶酶体中pro-CD成熟为具有酶活性的CD的过程受到破坏。这种缺陷损害了溶酶体的降解功能,导致未降解的货物在溶酶体中积累,从而导致INCL。值得注意的是,用硫酯酶模拟小分子N-叔丁基羟胺处理完整的Cln1(-/-)小鼠以及从这些动物获得的培养脑细胞,可以改善CD加工缺陷。我们的发现具有重要意义,因为它们定义了一条途径,即Cln1突变会破坏溶酶体中一种主要降解酶的成熟,从而导致INCL中的神经病理学,并表明溶酶体CD缺乏是INCL和CNCL之间的共同致病联系。

相似文献

4
Ppt1-deficiency dysregulates lysosomal Ca homeostasis contributing to pathogenesis in a mouse model of CLN1 disease.
J Inherit Metab Dis. 2022 May;45(3):635-656. doi: 10.1002/jimd.12485. Epub 2022 Mar 17.
5
Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL.
Nat Neurosci. 2013 Nov;16(11):1608-17. doi: 10.1038/nn.3526. Epub 2013 Sep 22.

引用本文的文献

1
Akap5 links synaptic dysfunction to neuroinflammatory signaling in a mouse model of infantile neuronal ceroid lipofuscinosis.
Front Synaptic Neurosci. 2024 May 10;16:1384625. doi: 10.3389/fnsyn.2024.1384625. eCollection 2024.
2
An innovative hematopoietic stem cell gene therapy approach benefits CLN1 disease in the mouse model.
EMBO Mol Med. 2023 Apr 11;15(4):e15968. doi: 10.15252/emmm.202215968. Epub 2023 Mar 6.
6
Cellular models of Batten disease.
Biochim Biophys Acta Mol Basis Dis. 2020 Sep 1;1866(9):165559. doi: 10.1016/j.bbadis.2019.165559. Epub 2019 Oct 23.
10
Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses.
Mol Neurodegener. 2019 Jan 16;14(1):4. doi: 10.1186/s13024-018-0300-6.

本文引用的文献

1
Damage control: cellular mechanisms of plasma membrane repair.
Trends Cell Biol. 2014 Dec;24(12):734-42. doi: 10.1016/j.tcb.2014.07.008. Epub 2014 Aug 20.
3
The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery.
J Cell Biol. 2013 Oct 28;203(2):283-98. doi: 10.1083/jcb.201303104.
4
Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL.
Nat Neurosci. 2013 Nov;16(11):1608-17. doi: 10.1038/nn.3526. Epub 2013 Sep 22.
5
The role of autophagy in neurodegenerative disease.
Nat Med. 2013 Aug;19(8):983-97. doi: 10.1038/nm.3232. Epub 2013 Aug 6.
6
Signals from the lysosome: a control centre for cellular clearance and energy metabolism.
Nat Rev Mol Cell Biol. 2013 May;14(5):283-96. doi: 10.1038/nrm3565.
7
Genetic basis and phenotypic correlations of the neuronal ceroid lipofusinoses.
Biochim Biophys Acta. 2013 Nov;1832(11):1827-30. doi: 10.1016/j.bbadis.2013.03.017. Epub 2013 Mar 28.
8
Human pathology in NCL.
Biochim Biophys Acta. 2013 Nov;1832(11):1807-26. doi: 10.1016/j.bbadis.2012.11.014. Epub 2012 Nov 29.
10
New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses.
Neurology. 2012 Jul 10;79(2):183-91. doi: 10.1212/WNL.0b013e31825f0547.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验