Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA.
Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA.
J Inherit Metab Dis. 2022 May;45(3):635-656. doi: 10.1002/jimd.12485. Epub 2022 Mar 17.
Inactivating mutations in the PPT1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) underlie the CLN1 disease, a devastating neurodegenerative lysosomal storage disorder. The mechanism of pathogenesis underlying CLN1 disease has remained elusive. PPT1 is a lysosomal enzyme, which catalyzes the removal of palmitate from S-palmitoylated proteins (constituents of ceroid lipofuscin) facilitating their degradation and clearance by lysosomal hydrolases. Thus, it has been proposed that Ppt1-deficiency leads to lysosomal accumulation of ceroid lipofuscin leading to CLN1 disease. While S-palmitoylation is catalyzed by palmitoyl acyltransferases (called ZDHHCs), palmitoyl-protein thioesterases (PPTs) depalmitoylate these proteins. We sought to determine the mechanism by which Ppt1-deficiency may impair lysosomal degradative function leading to infantile neuronal ceroid lipofuscinosis pathogenesis. Here, we report that in Ppt1 mice, which mimic CLN1 disease, low level of inositol 3-phosphate receptor-1 (IP3R1) that mediates Ca transport from the endoplasmic reticulum to the lysosome dysregulated lysosomal Ca homeostasis. Intriguingly, the transcription factor nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4), which regulates IP3R1-expression, required S-palmitoylation for trafficking from the cytoplasm to the nucleus. We identified two palmitoyl acyltransferases, ZDHHC4 and ZDHHC8, which catalyzed S-palmitoylation of NFATC4. Notably, in Ppt1 mice, reduced ZDHHC4 and ZDHHC8 levels markedly lowered S-palmitoylated NFATC4 (active) in the nucleus, which inhibited IP3R1-expression, thereby dysregulating lysosomal Ca homeostasis. Consequently, Ca -dependent lysosomal enzyme activities were markedly suppressed. Impaired lysosomal degradative function impaired autophagy, which caused lysosomal storage of undigested cargo. Importantly, IP3R1-overexpression in Ppt1 mouse fibroblasts ameliorated this defect. Our results reveal a previously unrecognized role of Ppt1 in regulating lysosomal Ca homeostasis and suggest that this defect contributes to pathogenesis of CLN1 disease.
PPT1 基因中的失活突变导致棕榈酰蛋白硫酯酶-1(PPT1)缺乏,从而引发 CLN1 疾病,这是一种毁灭性的神经退行性溶酶体贮积症。CLN1 疾病的发病机制一直难以捉摸。PPT1 是一种溶酶体酶,可催化 S-棕榈酰化蛋白(类脂褐素的组成部分)中棕榈酸的去除,从而促进溶酶体水解酶对其进行降解和清除。因此,有人提出 Ppt1 缺乏会导致溶酶体中类脂褐素的积累,从而导致 CLN1 疾病。虽然 S-棕榈酰化是由棕榈酰酰基转移酶(称为 ZDHHC)催化的,但棕榈酰蛋白硫酯酶(PPT)会使这些蛋白质去棕榈酰化。我们试图确定 Ppt1 缺乏可能损害溶酶体降解功能从而导致婴儿神经元蜡样脂褐质沉积症发病的机制。在这里,我们报告在 Ppt1 小鼠中,低水平的肌醇 3-磷酸受体-1(IP3R1)介导内质网到溶酶体的钙转运,导致溶酶体钙稳态失调。有趣的是,调节 IP3R1 表达的转录因子激活 T 细胞核因子,细胞质 4(NFATC4)需要 S-棕榈酰化才能从细胞质运输到细胞核。我们鉴定出两种棕榈酰酰基转移酶,ZDHHC4 和 ZDHHC8,它们催化 NFATC4 的 S-棕榈酰化。值得注意的是,在 Ppt1 小鼠中,ZDHHC4 和 ZDHHC8 水平的降低显著降低了细胞核中 S-棕榈酰化的 NFATC4(活性),从而抑制了 IP3R1 的表达,从而使溶酶体钙稳态失调。因此,钙依赖性溶酶体酶活性明显受到抑制。溶酶体降解功能受损会损害自噬,导致未消化货物在溶酶体中的积累。重要的是,在 Ppt1 小鼠成纤维细胞中过表达 IP3R1 可改善这一缺陷。我们的研究结果揭示了 Ppt1 调节溶酶体钙稳态的一个以前未知的作用,并表明这一缺陷导致了 CLN1 疾病的发病机制。