Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain.
Front Plant Sci. 2015 Jun 25;6:472. doi: 10.3389/fpls.2015.00472. eCollection 2015.
Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs.
小孢子在体外受到胁迫后会重新编程,向胚胎发生方向发展。这一过程是获得双单倍体植物的一种重要的育种工具。DNA 甲基化是一种主要的表观遗传修饰,它在分化和增殖过程中会发生改变。我们已经证明,在小孢子重新编程过程中,全基因组 DNA 甲基化会发生变化。5-氮杂胞苷(AzaC)不能被甲基化,导致 DNA 低甲基化。AzaC 是一种研究 DNA 动力学的有用的去甲基化试剂,在小孢子胚胎发生中有潜在的应用价值。本工作分析了在两种植物(双子叶植物油菜和单子叶植物大麦)中,短时间和长时间 AzaC 处理对小孢子胚胎发生起始和进程的影响。这涉及到原胚和胚胎产生的定量分析、DNA 甲基化的定量、5-甲基脱氧胞嘧啶(5mdC)免疫荧光和共聚焦显微镜分析以及通过光镜和电子显微镜分析染色质组织(浓缩/去浓缩)。4 天的 AzaC 处理(2.5 μM)增加了胚胎的诱导,与未处理的胚胎相比,这与 DNA 甲基化的减少、5mdC 的改变以及异染色质模式的改变有关。相比之下,较长时间的 AzaC 处理则减少了胚胎的产生。在两种植物中都发现了类似的效果,这表明 DNA 去甲基化促进了小孢子的重新编程、全能性的获得和胚胎发生的起始,而胚胎的分化需要新的 DNA 甲基化,并且被 AzaC 所阻止。这表明 DNA 甲基化在抑制小孢子重新编程和全能性获得方面可能起作用。结果为表观遗传修饰在小孢子胚胎发生中的作用提供了新的见解,并表明抑制剂(如 AzaC)可能有助于提高生物技术和育种计划中的进程效率。