a Pollen Biotechnology of Crop Plants laboratory , Biological Research Center, CIB-CSIC , Madrid , Spain.
Plant Signal Behav. 2019;14(2):1559577. doi: 10.1080/15592324.2018.1559577. Epub 2018 Dec 22.
Microspore embryogenesis is a powerful biotechnological tool that is very useful in crop breeding for the rapid production of haploid and double-haploid embryos and plants. In this in vitro system, the haploid microspore is reprogrammed by the application of specific stress treatments. A high level of cell death after the stress is a major factor that greatly reduces embryogenesis yield at its initial stages. Autophagy is a degradation pathway that is present in all eukaryotes and plays key roles in a range of processes, including stress responses. Many proteases participate in autophagy and cell death; among them, cathepsins are the most abundant enzymes with a role in plant senescence and programmed cell death (PCD). Moreover, although plant genomes do not contain homologues of caspases, caspase 3-like activity (main executioner protease of animal cell death) has been detected in many plant PCD processes. Recent studies by our group in barley microspore cultures reported that the stress treatment required for inducing microspore embryogenesis (cold treatment), also produced reactive oxygen species (ROS) and cell death, concomitantly with the induction of autophagy, as well as cathepsin-like and caspase 3-like proteolytic activities. In the present study, we report new data on microspore embryogenesis of rapeseed that indicate, as in barley, activation of cell death and autophagy processes after the inductive stress. The results revealed that treatments modulating autophagy and proteases produced the same effect in the two plant systems, regardless of the stress applied, cold in barley or heat in rapeseed. Pharmacological treatments with small bioactive compounds that inhibit ROS, autophagy and specific cell death-proteases led to reduced cell death and an increased embryogenesis initiation rate in both, barley and rapeseed. Taken together, these findings open up new intervention pathways by modulating autophagy and proteases, which are very promising in terms of increasing the efficiency of in vitro microspore embryogenesis systems for biotechnological applications in crop breeding.
小孢子胚胎发生是一种强大的生物技术工具,在作物育种中非常有用,可用于快速生产单倍体和双单倍体胚胎和植物。在这个体外系统中,通过应用特定的胁迫处理,使单倍体小孢子重新编程。胁迫后高水平的细胞死亡是极大降低胚胎发生初始阶段产率的主要因素。自噬是一种存在于所有真核生物中的降解途径,在包括应激反应在内的一系列过程中发挥关键作用。许多蛋白酶参与自噬和细胞死亡;其中,组织蛋白酶是参与植物衰老和程序性细胞死亡(PCD)的最丰富的酶。此外,尽管植物基因组不包含半胱天冬酶的同源物,但在许多植物 PCD 过程中已经检测到半胱天冬酶 3 样活性(动物细胞死亡的主要执行蛋白酶)。我们小组最近在大麦小孢子培养中的研究报告称,诱导小孢子胚胎发生所需的胁迫处理(冷处理)也会产生活性氧(ROS)和细胞死亡,同时诱导自噬以及组织蛋白酶样和半胱天冬酶 3 样蛋白水解活性。在本研究中,我们报告了油菜小孢子胚胎发生的新数据,表明与大麦一样,在诱导应激后,细胞死亡和自噬过程被激活。结果表明,调节自噬和蛋白酶的处理在两种植物系统中产生了相同的效果,无论施加的胁迫是大麦中的冷胁迫还是油菜中的热胁迫。用抑制 ROS、自噬和特定细胞死亡蛋白酶的小生物活性化合物进行药理学处理,导致两种植物系统的细胞死亡减少和胚胎发生起始率增加。综上所述,这些发现通过调节自噬和蛋白酶开辟了新的干预途径,这对于提高体外小孢子胚胎发生系统在作物育种中的生物技术应用效率具有很大的应用前景。