Suppr超能文献

使用朴素贝叶斯方法对药物诱导的骨髓毒性进行计算机模拟预测。

In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method.

作者信息

Zhang Hui, Yu Peng, Zhang Teng-Guo, Kang Yan-Li, Zhao Xiao, Li Yuan-Yuan, He Jia-Hui, Zhang Ji

机构信息

College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China.

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.

出版信息

Mol Divers. 2015 Nov;19(4):945-53. doi: 10.1007/s11030-015-9613-3. Epub 2015 Jul 11.

Abstract

Drug-induced myelotoxicity usually leads to decrease the production of platelets, red cells, and white cells. Thus, early identification and characterization of myelotoxicity hazard in drug development is very necessary. The purpose of this investigation was to develop a prediction model of drug-induced myelotoxicity by using a Naïve Bayes classifier. For comparison, other prediction models based on support vector machine and single-hidden-layer feed-forward neural network  methods were also established. Among all the prediction models, the Naïve Bayes classification model showed the best prediction performance, which offered an average overall prediction accuracy of [Formula: see text] for the training set and [Formula: see text] for the external test set. The significant contributions of this study are that we first developed a Naïve Bayes classification model of drug-induced myelotoxicity adverse effect using a larger scale dataset, which could be employed for the prediction of drug-induced myelotoxicity. In addition, several important molecular descriptors and substructures of myelotoxic compounds have been identified, which should be taken into consideration in the design of new candidate compounds to produce safer and more effective drugs, ultimately reducing the attrition rate in later stages of drug development.

摘要

药物诱导的骨髓毒性通常会导致血小板、红细胞和白细胞的生成减少。因此,在药物研发过程中尽早识别和表征骨髓毒性风险非常必要。本研究的目的是使用朴素贝叶斯分类器开发一种药物诱导骨髓毒性的预测模型。为作比较,还建立了基于支持向量机和单隐层前馈神经网络方法的其他预测模型。在所有预测模型中,朴素贝叶斯分类模型显示出最佳的预测性能,其对训练集的平均总体预测准确率为[公式:见原文],对外部测试集的平均总体预测准确率为[公式:见原文]。本研究的重要贡献在于,我们首次使用更大规模的数据集开发了药物诱导骨髓毒性不良反应的朴素贝叶斯分类模型,该模型可用于预测药物诱导的骨髓毒性。此外,已识别出骨髓毒性化合物的几个重要分子描述符和子结构,在设计新的候选化合物以生产更安全、更有效的药物时应予以考虑,最终降低药物研发后期的淘汰率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验