Suppr超能文献

运用朴素贝叶斯分类器技术开发新型计算预测模型以评估化学诱导神经毒性。

Developing novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique.

机构信息

College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, PR China.

College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, PR China.

出版信息

Food Chem Toxicol. 2020 Sep;143:111513. doi: 10.1016/j.fct.2020.111513. Epub 2020 Jul 1.

Abstract

Development of reliable and efficient alternative in vivo methods for evaluation of the chemicals with potential neurotoxicity is an urgent need in the early stages of drug design. In this investigation, the computational prediction models for drug-induced neurotoxicity were developed by using the classical naïve Bayes classifier. Eight molecular properties closely relevant to neurotoxicity were selected. Then, 110 classification models were developed with using the eight important molecular descriptors and 10 types of fingerprints with 11 different maximum diameters. Among these 110 prediction models, the prediction model (NB-03) based on eight molecular descriptors combined with ECFP_10 fingerprints showed the best prediction performance, which gave 90.5% overall prediction accuracy for the training set and 82.1% concordance for the external test set. In addition, compared to naïve Bayes classifier, the recursive partitioning classifier displayed worse predictive performance for neurotoxicity. Therefore, the established NB-03 prediction model can be used as a reliable virtual screening tool to predict neurotoxicity in the early stages of drug design. Moreover, some structure alerts for characterizing neurotoxicity were identified in this research, which could give an important guidance for the chemists in structural modification and optimization to reduce the chemicals with potential neurotoxicity.

摘要

在药物设计的早期阶段,开发可靠且高效的替代体内方法来评估具有潜在神经毒性的化学物质是当务之急。在这项研究中,使用经典的朴素贝叶斯分类器开发了用于药物诱导神经毒性的计算预测模型。选择了 8 种与神经毒性密切相关的分子特性。然后,使用 8 个重要的分子描述符和 10 种不同最大直径的指纹,开发了 110 个分类模型。在这 110 个预测模型中,基于 8 个分子描述符结合 ECFP_10 指纹的预测模型 (NB-03) 表现出最佳的预测性能,对训练集的总体预测准确率为 90.5%,对外部测试集的一致性为 82.1%。此外,与朴素贝叶斯分类器相比,递归分区分类器对神经毒性的预测性能较差。因此,建立的 NB-03 预测模型可以用作可靠的虚拟筛选工具,用于在药物设计的早期阶段预测神经毒性。此外,本研究还确定了一些用于表征神经毒性的结构警示,这可为化学工程师在结构修饰和优化方面减少具有潜在神经毒性的化学品提供重要指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验