Suppr超能文献

冲击材料中空隙位置瞬态温度升高的分子动力学分析:黑索今(RDX)和铜。

Molecular dynamics analysis of the transient temperature increase at void locations in shocked materials: RDX and Cu.

作者信息

Warrier M, Pahari P, Chaturvedi S

机构信息

Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, India,

出版信息

J Mol Model. 2015 Aug;21(8):192. doi: 10.1007/s00894-015-2737-7. Epub 2015 Jul 11.

Abstract

Molecular dynamics (MD) simulations of high velocity impact (1-6 km/s) of RDX crystal with a nanometer-sized void, has been carried out to understand the mechanism of increase in temperature at void locations under shock loading. Similar simulations are then carried out on single-crystal copper for better interpretation of the results. A reactive potential that can simulate chemical reactions (ReaxFF) has been used for RDX, whereas an EAM potential has been used for Cu. Increased temperature at the void locations are observed under shock loading. The atomic motion, temperature, average potential energy per atom (PE), and average kinetic energy per atom (KE) in and around the voids are closely monitored in order to understand the reason for temperature increase. We compare our results with existing proposed mechanisms and show that some of the proposed mechanisms are not necessary for increased temperature at a void location. It is shown that the directed particle velocity is efficiently is converted into randomized velocity due to the presence of voids thereby increasing the local temperature transiently. In this initial stage (few picoseconds) of the shock, chemical reactions of energetic materials do not play a part in the temperature rise.

摘要

为了理解冲击载荷下纳米级孔隙处温度升高的机制,对含有纳米级孔隙的黑索今(RDX)晶体进行了高速冲击(1 - 6 km/s)的分子动力学(MD)模拟。然后对单晶铜进行了类似模拟,以便更好地解释结果。对RDX使用了一种能够模拟化学反应的反应势(ReaxFF),而对铜使用了嵌入原子法(EAM)势。在冲击载荷下观察到孔隙处温度升高。为了理解温度升高的原因,对孔隙内部及其周围的原子运动、温度、每个原子的平均势能(PE)和每个原子的平均动能(KE)进行了密切监测。我们将结果与现有的提出机制进行比较,表明一些提出的机制对于孔隙处温度升高并非必要。结果表明,由于孔隙的存在,定向粒子速度有效地转化为随机速度,从而使局部温度瞬间升高。在冲击的这个初始阶段(几皮秒),含能材料的化学反应在温度升高中不起作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验