Zhou Tingting, Lou Jianfeng, Zhang Yangeng, Song Huajie, Huang Fenglei
Institute of Applied Physics and Computational Mathematics, Beijing, 100094, P. R. China.
Phys Chem Chem Phys. 2016 Jul 14;18(26):17627-45. doi: 10.1039/c6cp02015a. Epub 2016 Jun 16.
We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.
我们报告了含有纳米级球形孔洞的β-环四亚甲基四硝胺(β-HMX)单晶冲击起爆的百万原子反应分子动力学模拟。观察到冲击诱导的孔洞坍塌、随后的热点形成以及化学反应引发,这些都取决于孔洞尺寸和冲击强度。对于1 km s⁻¹的冲击速度和4 nm的孔洞半径,孔洞坍塌过程包括三个阶段;主要机制是上游分子朝着孔洞中心线和下游表面汇聚,形成流动分子。热点形成也经历三个阶段,主要机制是流动分子在下游表面碰撞导致动能转化为热能。热点的高温引发局部化学反应,N-NO₂键的断裂在初始反应机制中起关键作用。冲击强度和孔洞尺寸对冲击动力学过程有显著影响,导致导致孔洞坍塌和热点形成的主要机制发生变化。更大的孔洞或更强的冲击会导致更强烈的热点,从而引发更剧烈的化学反应,促进更多反应通道并在更短时间内产生更多反应产物。反应产物主要集中在发展成熟的热点中,表明孔洞坍塌极大地增强了hmx晶体的化学反应活性。本研究得出的详细信息有助于深入理解孔洞坍塌在热点形成和炸药化学反应引发中的作用。