Suppr超能文献

核糖体合成和翻译后修饰肽(RiPP)酶的模块化特性助力修饰肽的定向合成。

Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides.

作者信息

Sardar Debosmita, Lin Zhenjian, Schmidt Eric W

机构信息

Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.

Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.

出版信息

Chem Biol. 2015 Jul 23;22(7):907-16. doi: 10.1016/j.chembiol.2015.06.014. Epub 2015 Jul 9.

Abstract

Macrocyclases and other posttranslational enzymes afford derived peptides with improved properties for pharmaceutical and biotechnological applications. Here, we asked whether multiple posttranslational modifications could be simultaneously controlled and matched to rationally generate new peptide derivatives. We reconstituted the cyanobactin peptide natural products in vitro with up to five different posttranslational enzymes in a single tube. By manipulating the order of addition and identity of enzymes and exploiting their broad-substrate tolerance, we engineered the production of highly unnatural derivatives, including an N-C peptide macrocycle of 22 amino acids in length. In addition to engineering, this work better defines the macrocyclization mechanism, provides the first biochemical demonstration of Ser/Thr posttranslational prenylation, and is the first example of reconstitution of a native, multistep RiPP pathway with multiple enzymes in one pot. Overall, this work demonstrates how the modularity of posttranslational modification enzymes can be used to design and synthesize desirable peptide motifs.

摘要

大环化酶和其他翻译后修饰酶能够产生具有改良特性的衍生肽,适用于制药和生物技术应用。在此,我们探讨了是否可以同时控制多种翻译后修饰并使其相互匹配,从而合理地生成新的肽衍生物。我们在体外将蓝细菌素肽天然产物与多达五种不同的翻译后修饰酶在同一试管中进行重组。通过操纵酶的添加顺序和种类,并利用它们广泛的底物耐受性,我们设计合成了高度非天然的衍生物,包括一个长度为22个氨基酸的N-C肽大环。除了工程设计外,这项工作还更好地定义了大环化机制,首次进行了丝氨酸/苏氨酸翻译后异戊烯基化的生化证明,并且是在一个反应体系中用多种酶重组天然多步核糖体合成和翻译后修饰肽(RiPP)途径的首个实例。总体而言,这项工作展示了如何利用翻译后修饰酶的模块化来设计和合成理想的肽基序。

相似文献

1
Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides.
Chem Biol. 2015 Jul 23;22(7):907-16. doi: 10.1016/j.chembiol.2015.06.014. Epub 2015 Jul 9.
2
The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
Methods Enzymol. 2018;604:113-163. doi: 10.1016/bs.mie.2018.03.002. Epub 2018 May 4.
3
Insights into heterocyclization from two highly similar enzymes.
J Am Chem Soc. 2010 Mar 31;132(12):4089-91. doi: 10.1021/ja9107116.
4
Three Principles of Diversity-Generating Biosynthesis.
Acc Chem Res. 2017 Oct 17;50(10):2569-2576. doi: 10.1021/acs.accounts.7b00330. Epub 2017 Sep 11.
5
Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
Methods Enzymol. 2016;575:1-20. doi: 10.1016/bs.mie.2016.02.012. Epub 2016 Mar 16.
6
Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria.
Appl Microbiol Biotechnol. 2010 May;86(5):1213-25. doi: 10.1007/s00253-010-2482-x. Epub 2010 Feb 27.
7
Applying Promiscuous RiPP Enzymes to Peptide Backbone -Methylation Chemistry.
ACS Chem Biol. 2022 Aug 19;17(8):2165-2178. doi: 10.1021/acschembio.2c00293. Epub 2022 Jul 12.
8
An efficient method for the in vitro production of azol(in)e-based cyclic peptides.
Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14171-4. doi: 10.1002/anie.201408082. Epub 2014 Oct 21.
9
Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6551-6556. doi: 10.1073/pnas.1620499114. Epub 2017 Jun 5.
10
Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase.
Angew Chem Int Ed Engl. 2021 Apr 6;60(15):8460-8465. doi: 10.1002/anie.202015975. Epub 2021 Mar 5.

引用本文的文献

1
RiPP Enzymes for Biosynthetically Derived Cyclic Peptide Libraries.
Methods Mol Biol. 2025;2934:233-243. doi: 10.1007/978-1-0716-4578-9_16.
2
Design and Production of Geranylated Cyclic Peptides by the RiPP Enzymes SyncM and PirF.
Biomacromolecules. 2025 May 12;26(5):3186-3199. doi: 10.1021/acs.biomac.5c00260. Epub 2025 Apr 6.
4
De novo design of ribosomally synthesized and post-translationally modified peptides.
Nat Chem. 2025 Feb;17(2):233-245. doi: 10.1038/s41557-024-01685-9. Epub 2025 Jan 7.
5
Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization.
Chembiochem. 2023 Sep 1;24(17):e202300372. doi: 10.1002/cbic.202300372. Epub 2023 Jul 19.
6
Cell-free Biosynthesis of Peptidomimetics.
Biotechnol Bioprocess Eng. 2023 Feb 3:1-17. doi: 10.1007/s12257-022-0268-5.
7
Emulating nonribosomal peptides with ribosomal biosynthetic strategies.
RSC Chem Biol. 2022 Dec 6;4(1):7-36. doi: 10.1039/d2cb00169a. eCollection 2023 Jan 4.
9
Applying Promiscuous RiPP Enzymes to Peptide Backbone -Methylation Chemistry.
ACS Chem Biol. 2022 Aug 19;17(8):2165-2178. doi: 10.1021/acschembio.2c00293. Epub 2022 Jul 12.

本文引用的文献

1
Peptide macrocyclization catalyzed by a prolyl oligopeptidase involved in α-amanitin biosynthesis.
Chem Biol. 2014 Dec 18;21(12):1610-7. doi: 10.1016/j.chembiol.2014.10.015. Epub 2014 Dec 4.
2
Ustiloxins, fungal cyclic peptides, are ribosomally synthesized in Ustilaginoidea virens.
Bioinformatics. 2015 Apr 1;31(7):981-5. doi: 10.1093/bioinformatics/btu753. Epub 2014 Nov 19.
3
An efficient method for the in vitro production of azol(in)e-based cyclic peptides.
Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14171-4. doi: 10.1002/anie.201408082. Epub 2014 Oct 21.
4
Assessing the combinatorial potential of the RiPP cyanobactin tru pathway.
ACS Synth Biol. 2015 Apr 17;4(4):482-92. doi: 10.1021/sb500267d. Epub 2014 Sep 2.
5
Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis.
Nat Chem Biol. 2014 Sep;10(9):732-8. doi: 10.1038/nchembio.1586. Epub 2014 Jul 20.
6
Enzyme-catalyzed macrocyclization of long unprotected peptides.
Org Lett. 2014 Jul 18;16(14):3652-5. doi: 10.1021/ol501609y. Epub 2014 Jul 8.
7
One-pot synthesis of azoline-containing peptides in a cell-free translation system integrated with a posttranslational cyclodehydratase.
Chem Biol. 2014 Jun 19;21(6):766-74. doi: 10.1016/j.chembiol.2014.04.008. Epub 2014 May 22.
8
9
Recognition sequences and substrate evolution in cyanobactin biosynthesis.
ACS Synth Biol. 2015 Feb 20;4(2):167-76. doi: 10.1021/sb500019b. Epub 2014 Mar 26.
10
The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction.
Angew Chem Int Ed Engl. 2013 Dec 23;52(52):13991-6. doi: 10.1002/anie.201306302. Epub 2013 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验