Sardar Debosmita, Lin Zhenjian, Schmidt Eric W
Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.
Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.
Chem Biol. 2015 Jul 23;22(7):907-16. doi: 10.1016/j.chembiol.2015.06.014. Epub 2015 Jul 9.
Macrocyclases and other posttranslational enzymes afford derived peptides with improved properties for pharmaceutical and biotechnological applications. Here, we asked whether multiple posttranslational modifications could be simultaneously controlled and matched to rationally generate new peptide derivatives. We reconstituted the cyanobactin peptide natural products in vitro with up to five different posttranslational enzymes in a single tube. By manipulating the order of addition and identity of enzymes and exploiting their broad-substrate tolerance, we engineered the production of highly unnatural derivatives, including an N-C peptide macrocycle of 22 amino acids in length. In addition to engineering, this work better defines the macrocyclization mechanism, provides the first biochemical demonstration of Ser/Thr posttranslational prenylation, and is the first example of reconstitution of a native, multistep RiPP pathway with multiple enzymes in one pot. Overall, this work demonstrates how the modularity of posttranslational modification enzymes can be used to design and synthesize desirable peptide motifs.
大环化酶和其他翻译后修饰酶能够产生具有改良特性的衍生肽,适用于制药和生物技术应用。在此,我们探讨了是否可以同时控制多种翻译后修饰并使其相互匹配,从而合理地生成新的肽衍生物。我们在体外将蓝细菌素肽天然产物与多达五种不同的翻译后修饰酶在同一试管中进行重组。通过操纵酶的添加顺序和种类,并利用它们广泛的底物耐受性,我们设计合成了高度非天然的衍生物,包括一个长度为22个氨基酸的N-C肽大环。除了工程设计外,这项工作还更好地定义了大环化机制,首次进行了丝氨酸/苏氨酸翻译后异戊烯基化的生化证明,并且是在一个反应体系中用多种酶重组天然多步核糖体合成和翻译后修饰肽(RiPP)途径的首个实例。总体而言,这项工作展示了如何利用翻译后修饰酶的模块化来设计和合成理想的肽基序。