Suppr超能文献

应用多功能 RiPP 酶于肽主链 - 甲基化化学。

Applying Promiscuous RiPP Enzymes to Peptide Backbone -Methylation Chemistry.

机构信息

Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.

出版信息

ACS Chem Biol. 2022 Aug 19;17(8):2165-2178. doi: 10.1021/acschembio.2c00293. Epub 2022 Jul 12.

Abstract

The methylation of peptide backbone amides is a hallmark of bioactive natural products, and it also greatly modifies the pharmacology of synthetic peptides. Usually, bioactive -methylated peptides are cyclic. However, there is very limited knowledge about how post-translational enzymes can be applied to the synthesis of designed -methylated peptides or peptide libraries. Here, driven by the established ability of some RiPP enzymes to process diverse substrates, we sought to define catalysts for the and macrocyclization of backbone-methylated peptides. We developed efficient methods in which short, synthetic -methylated peptides could be modified using side chain and mainchain macrocyclases, PsnB and PCY1 from plesiocin and orbitide biosynthetic pathways, respectively. Most significantly, a strategy for PsnB cyclase was designed enabling simple in vitro methods compatible with solid-phase peptide synthesis. We show that cyanobactin N-terminal protease PatA is a broadly useful catalyst that is also compatible with -methylation chemistry, but that cyanobactin macrocyclase PatG is strongly biased against -methylated substrates. Finally, we sought to marry these macrocyclase tools with an enzyme that -methylates its core peptide: OphMA from the omphalotin pathway. However, instead, we reveal some limitations of OphMA and demonstrate that it unexpectedly and extensively modified the enzyme itself . Together, these results demonstrate proof-of-concept for enzymatic synthesis of -methylated peptide macrocycles.

摘要

肽主链酰胺的甲基化是生物活性天然产物的标志,它也极大地改变了合成肽的药理学。通常,生物活性 -甲基化肽是环状的。然而,关于翻译后酶如何应用于设计的 -甲基化肽或肽库的合成,我们知之甚少。在这里,受一些 RiPP 酶能够处理不同底物的能力的驱动,我们试图确定用于主链甲基化肽的 和 环化的催化剂。我们开发了有效的方法,使用侧链和主链环化酶 PsnB 和 PCY1(分别来自 plesiocin 和 orbitide 生物合成途径)修饰短的合成 -甲基化肽。最重要的是,设计了一种 PsnB 环化酶的策略,使简单的体外方法与固相肽合成兼容。我们表明,氰基菌素 N 端蛋白酶 PatA 是一种用途广泛的催化剂,也与 -甲基化化学兼容,但氰基菌素环化酶 PatG 强烈偏向于 -甲基化底物。最后,我们试图将这些环化酶工具与一种修饰其核心肽的酶结合:来自 omphalotin 途径的 OphMA。然而,相反,我们揭示了 OphMA 的一些局限性,并证明它出人意料地广泛修饰了自身。总之,这些结果证明了 -甲基化肽大环的酶促合成的概念验证。

相似文献

1
Applying Promiscuous RiPP Enzymes to Peptide Backbone -Methylation Chemistry.
ACS Chem Biol. 2022 Aug 19;17(8):2165-2178. doi: 10.1021/acschembio.2c00293. Epub 2022 Jul 12.
3
Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6551-6556. doi: 10.1073/pnas.1620499114. Epub 2017 Jun 5.
4
Enzyme-mediated backbone N-methylation in ribosomally encoded peptides.
Methods Enzymol. 2021;656:429-458. doi: 10.1016/bs.mie.2021.04.014. Epub 2021 May 1.
6
Expanding the chemical space of synthetic cyclic peptides using a promiscuous macrocyclase from prenylagaramide biosynthesis.
ACS Catal. 2020 Jul 2;10(13):7146-7153. doi: 10.1021/acscatal.0c00623. Epub 2020 Jun 17.
7
The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
Methods Enzymol. 2018;604:113-163. doi: 10.1016/bs.mie.2018.03.002. Epub 2018 May 4.
8
Enzymatic methylation of the amide bond.
Curr Opin Struct Biol. 2020 Dec;65:79-88. doi: 10.1016/j.sbi.2020.06.004. Epub 2020 Jul 10.
9
A Self-Sacrificing N-Methyltransferase Is the Precursor of the Fungal Natural Product Omphalotin.
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9994-9997. doi: 10.1002/anie.201703488. Epub 2017 Jul 17.
10
Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides.
Chem Biol. 2015 Jul 23;22(7):907-16. doi: 10.1016/j.chembiol.2015.06.014. Epub 2015 Jul 9.

引用本文的文献

2
Synthetic Biology in Natural Product Biosynthesis.
Chem Rev. 2025 Apr 9;125(7):3814-3931. doi: 10.1021/acs.chemrev.4c00567. Epub 2025 Mar 21.
4
Genome Mining and Biological Engineering of Type III Borosins from Bacteria.
Int J Mol Sci. 2024 Aug 29;25(17):9350. doi: 10.3390/ijms25179350.
5
Use of a head-to-tail peptide cyclase to prepare hybrid RiPPs.
Chem Commun (Camb). 2024 Jun 20;60(51):6508-6511. doi: 10.1039/d3cc04919a.
7
Cheminformatics-Guided Cell-Free Exploration of Peptide Natural Products.
J Am Chem Soc. 2024 Mar 27;146(12):8016-8030. doi: 10.1021/jacs.3c11306. Epub 2024 Mar 12.
8
Large-scale Bioinformatic Study of Graspimiditides and Structural Characterization of Albusimiditide.
ACS Chem Biol. 2023 Nov 17;18(11):2394-2404. doi: 10.1021/acschembio.3c00365. Epub 2023 Oct 19.
9
Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization.
Chembiochem. 2023 Sep 1;24(17):e202300372. doi: 10.1002/cbic.202300372. Epub 2023 Jul 19.

本文引用的文献

1
Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB.
Nat Chem Biol. 2021 Nov;17(11):1123-1131. doi: 10.1038/s41589-021-00855-x. Epub 2021 Sep 2.
2
Leader peptide exchange to produce hybrid, new-to-nature ribosomal natural products.
Chem Commun (Camb). 2021 Jun 29;57(52):6372-6375. doi: 10.1039/d0cc06889f.
3
: A Review of Ethnomedicinal, Phytochemical, Pharmacological, and Toxicological Findings.
Front Chem. 2021 Apr 29;9:666280. doi: 10.3389/fchem.2021.666280. eCollection 2021.
4
Engineering of a Peptide α-N-Methyltransferase to Methylate Non-Proteinogenic Amino Acids.
Angew Chem Int Ed Engl. 2021 Jun 21;60(26):14319-14323. doi: 10.1002/anie.202100818. Epub 2021 May 17.
5
Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase.
Angew Chem Int Ed Engl. 2021 Apr 6;60(15):8460-8465. doi: 10.1002/anie.202015975. Epub 2021 Mar 5.
6
Expanding the chemical space of synthetic cyclic peptides using a promiscuous macrocyclase from prenylagaramide biosynthesis.
ACS Catal. 2020 Jul 2;10(13):7146-7153. doi: 10.1021/acscatal.0c00623. Epub 2020 Jun 17.
7
New developments in RiPP discovery, enzymology and engineering.
Nat Prod Rep. 2021 Jan 1;38(1):130-239. doi: 10.1039/d0np00027b. Epub 2020 Sep 16.
8
Genome mining strategies for ribosomally synthesised and post-translationally modified peptides.
Comput Struct Biotechnol J. 2020 Jun 25;18:1838-1851. doi: 10.1016/j.csbj.2020.06.032. eCollection 2020.
9
Substrate Plasticity of a Fungal Peptide α--Methyltransferase.
ACS Chem Biol. 2020 Jul 17;15(7):1901-1912. doi: 10.1021/acschembio.0c00237. Epub 2020 Jun 19.
10
Peptide Therapeutics 2.0.
Molecules. 2020 May 13;25(10):2293. doi: 10.3390/molecules25102293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验