Suppr超能文献

Vy-PER:消除下一代测序数据中病毒整合事件的假阳性检测

Vy-PER: eliminating false positive detection of virus integration events in next generation sequencing data.

作者信息

Forster Michael, Szymczak Silke, Ellinghaus David, Hemmrich Georg, Rühlemann Malte, Kraemer Lars, Mucha Sören, Wienbrandt Lars, Stanulla Martin, Franke Andre

机构信息

Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schleswig-Holstein, D-24105 Kiel, Germany.

Department of Computer Science, Christian-Albrechts-University of Kiel, Schleswig-Holstein, D-24118 Kiel, Germany.

出版信息

Sci Rep. 2015 Jul 13;5:11534. doi: 10.1038/srep11534.

Abstract

Several pathogenic viruses such as hepatitis B and human immunodeficiency viruses may integrate into the host genome. These virus/host integrations are detectable using paired-end next generation sequencing. However, the low number of expected true virus integrations may be difficult to distinguish from the noise of many false positive candidates. Here, we propose a novel filtering approach that increases specificity without compromising sensitivity for virus/host chimera detection. Our detection pipeline termed Vy-PER (Virus integration detection bY Paired End Reads) outperforms existing similar tools in speed and accuracy. We analysed whole genome data from childhood acute lymphoblastic leukemia (ALL), which is characterised by genomic rearrangements and usually associated with radiation exposure. This analysis was motivated by the recently reported virus integrations at genomic rearrangement sites and association with chromosomal instability in liver cancer. However, as expected, our analysis of 20 tumour and matched germline genomes from ALL patients finds no significant evidence for integrations by known viruses. Nevertheless, our method eliminates 12,800 false positives per genome (80× coverage) and only our method detects singleton human-phiX174-chimeras caused by optical errors of the Illumina HiSeq platform. This high accuracy is useful for detecting low virus integration levels as well as non-integrated viruses.

摘要

几种致病病毒,如乙肝病毒和人类免疫缺陷病毒,可能会整合到宿主基因组中。利用双末端新一代测序技术可以检测到这些病毒与宿主的整合情况。然而,预期的真正病毒整合数量较少,可能难以与众多假阳性候选者的噪声区分开来。在此,我们提出了一种新颖的过滤方法,该方法在不影响病毒/宿主嵌合体检测灵敏度的情况下提高了特异性。我们的检测流程称为Vy-PER(通过双末端读段进行病毒整合检测),在速度和准确性方面优于现有的类似工具。我们分析了儿童急性淋巴细胞白血病(ALL)的全基因组数据,其特征是基因组重排,通常与辐射暴露有关。这项分析的动机是最近报道的肝癌基因组重排位点处的病毒整合以及与染色体不稳定性的关联。然而,正如预期的那样,我们对20例ALL患者的肿瘤和匹配的种系基因组进行的分析没有发现已知病毒整合的显著证据。尽管如此,我们的方法每个基因组(80倍覆盖度)可消除12,800个假阳性,而且只有我们的方法能够检测到由Illumina HiSeq平台的光学错误导致的单例人类-phiX174嵌合体。这种高精度对于检测低水平的病毒整合以及未整合的病毒很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ee5/4499804/0c80c6a1beab/srep11534-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验