Lee D-J, Zhu Z, Toscas P
BCAM - Basque Center for Applied Mathematics, Bilbao, Spain.
Department of Statistics, Iowa State University, Ames, USA.
Environmetrics. 2015 Aug 1;26(5):354-362. doi: 10.1002/env.2344.
A new methodology is proposed for the analysis, modeling and forecasting of data collected from a wireless sensor network. Our approach is considered in the framework of a functional data analysis paradigm where observed data is represented in a functional form. To reduce dimensionality, functional principal components analysis is applied to highlight important underlying characteristics and find patterns of variations. The principal scores are modeled with tensor product smooths that allow for smoothing over space and time. The model is then used for simultaneous spatial prediction at unsampled locations and to forecast future observations. We consider soil temperature data from a wireless sensor network of 50 sensor nodes in two different land types (grassland and forest) observed during 60 consecutive days in private property close to Yass, New South Wales, Australia.
本文提出了一种新的方法,用于分析、建模和预测从无线传感器网络收集的数据。我们的方法是在功能数据分析范式的框架内考虑的,其中观测数据以功能形式表示。为了降低维度,应用功能主成分分析来突出重要的潜在特征并找到变化模式。主得分用张量积平滑模型进行建模,该模型允许在空间和时间上进行平滑处理。然后,该模型用于在未采样位置进行同步空间预测,并预测未来的观测值。我们考虑了来自澳大利亚新南威尔士州亚斯附近一处私有土地上的50个传感器节点的无线传感器网络的土壤温度数据,该数据是在两种不同土地类型(草地和森林)中连续60天观测得到的。