Suppr超能文献

用于无线传感器网络数据的时空功能数据分析

Spatio-temporal functional data analysis for wireless sensor networks data.

作者信息

Lee D-J, Zhu Z, Toscas P

机构信息

BCAM - Basque Center for Applied Mathematics, Bilbao, Spain.

Department of Statistics, Iowa State University, Ames, USA.

出版信息

Environmetrics. 2015 Aug 1;26(5):354-362. doi: 10.1002/env.2344.

Abstract

A new methodology is proposed for the analysis, modeling and forecasting of data collected from a wireless sensor network. Our approach is considered in the framework of a functional data analysis paradigm where observed data is represented in a functional form. To reduce dimensionality, functional principal components analysis is applied to highlight important underlying characteristics and find patterns of variations. The principal scores are modeled with tensor product smooths that allow for smoothing over space and time. The model is then used for simultaneous spatial prediction at unsampled locations and to forecast future observations. We consider soil temperature data from a wireless sensor network of 50 sensor nodes in two different land types (grassland and forest) observed during 60 consecutive days in private property close to Yass, New South Wales, Australia.

摘要

本文提出了一种新的方法,用于分析、建模和预测从无线传感器网络收集的数据。我们的方法是在功能数据分析范式的框架内考虑的,其中观测数据以功能形式表示。为了降低维度,应用功能主成分分析来突出重要的潜在特征并找到变化模式。主得分用张量积平滑模型进行建模,该模型允许在空间和时间上进行平滑处理。然后,该模型用于在未采样位置进行同步空间预测,并预测未来的观测值。我们考虑了来自澳大利亚新南威尔士州亚斯附近一处私有土地上的50个传感器节点的无线传感器网络的土壤温度数据,该数据是在两种不同土地类型(草地和森林)中连续60天观测得到的。

相似文献

1
Spatio-temporal functional data analysis for wireless sensor networks data.
Environmetrics. 2015 Aug 1;26(5):354-362. doi: 10.1002/env.2344.
2
Time Series Forecasting Energy-efficient Organization of Wireless Sensor Networks.
Sensors (Basel). 2007 Sep 5;7(9):1766-1792. doi: 10.3390/s7091766.
3
Energy-efficient Organization of Wireless Sensor Networks with Adaptive Forecasting.
Sensors (Basel). 2008 Apr 11;8(4):2604-2616. doi: 10.3390/s8042604.
4
Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.
ISA Trans. 2015 Nov;59:180-92. doi: 10.1016/j.isatra.2015.07.014. Epub 2015 Sep 3.
5
Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks.
Sensors (Basel). 2007 Nov 15;7(11):2779-2807. doi: 10.3390/s7112779.
6
Distributed Principal Component Analysis for Wireless Sensor Networks.
Sensors (Basel). 2008 Aug 11;8(8):4821-4850. doi: 10.3390/s8084821.
8
Nearest neighbor imputation using spatial-temporal correlations in wireless sensor networks.
Inf Fusion. 2014 Jan;15:64-79. doi: 10.1016/j.inffus.2012.08.007. Epub 2012 Sep 5.
9
Automated Methodology for Dependability Evaluation of Wireless Visual Sensor Networks.
Sensors (Basel). 2018 Aug 10;18(8):2629. doi: 10.3390/s18082629.
10
Energy-efficient Optimization of Reorganization-Enabled Wireless Sensor Networks.
Sensors (Basel). 2007 Sep 5;7(9):1793-1816. doi: 10.3390/s7091793.

本文引用的文献

1
An overview on wireless sensor networks technology and evolution.
Sensors (Basel). 2009;9(9):6869-96. doi: 10.3390/s90906869. Epub 2009 Aug 31.
2
A class of nonseparable and nonstationary spatial temporal covariance functions.
Environmetrics. 2007 Nov 5;19(5):487-507. doi: 10.1002/env.891.
3
Modulation models for seasonal time series and incidence tables.
Stat Med. 2008 Jul 30;27(17):3430-41. doi: 10.1002/sim.3188.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验