Eilers Paul H C, Gampe Jutta, Marx Brian D, Rau Roland
Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, The Netherlands.
Stat Med. 2008 Jul 30;27(17):3430-41. doi: 10.1002/sim.3188.
We model monthly disease counts on an age-time grid using the two-dimensional varying-coefficient Poisson regression. Since the marginal profile of counts shows a very strong and varying annual cycle, sine and cosine regressors model periodicity, but their coefficients are allowed to vary smoothly over the age and time plane. The coefficient surfaces are estimated using a relatively large tensor product B-spline basis. Smoothness is tuned using difference penalties on the rows and columns of the tensor product coefficients. Heavy over-dispersion occurs, making it impossible to use Akaike's information criterion or Bayesian information criterion based on a Poisson likelihood. It is handled by selective weighting of part of the data and by the use of extended quasi-likelihood. Very efficient computation is achieved with fast array algorithms. The model is applied to monthly deaths due to respiratory diseases, for U.S. females during 1959-1998 and for ages 51-100.
我们使用二维变系数泊松回归在年龄-时间网格上对每月疾病计数进行建模。由于计数的边际分布显示出非常强烈且变化的年度周期,正弦和余弦回归器对周期性进行建模,但其系数在年龄和时间平面上允许平滑变化。系数曲面使用相对较大的张量积B样条基进行估计。通过对张量积系数的行和列使用差分惩罚来调整平滑度。出现了严重的过度离散,使得无法基于泊松似然使用赤池信息准则或贝叶斯信息准则。通过对部分数据进行选择性加权以及使用扩展拟似然来处理。使用快速数组算法实现了非常高效的计算。该模型应用于1959 - 1998年期间美国51 - 100岁女性因呼吸系统疾病导致的每月死亡人数。