Suppr超能文献

杏仁核、内侧前额叶皮质和外侧下丘脑之间连接的组织架构:大鼠的单重和双重逆行追踪研究

Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats.

作者信息

Reppucci Christina J, Petrovich Gorica D

机构信息

Department of Psychology, Boston College, 344 McGuinn Hall, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467, USA.

出版信息

Brain Struct Funct. 2016 Jul;221(6):2937-62. doi: 10.1007/s00429-015-1081-0. Epub 2015 Jul 14.

Abstract

The amygdala and medial prefrontal cortex (mPFC) are highly interconnected telencephalic areas critical for cognitive processes, including associative learning and decision making. Both structures strongly innervate the lateral hypothalamus (LHA), an important component of the networks underlying the control of feeding and other motivated behaviors. The amygdala-prefrontal-lateral hypothalamic system is therefore well positioned to exert cognitive control over behavior. However, the organization of this system is not well defined, particularly the topography of specific circuitries between distinct cell groups within these complex, heterogeneous regions. This study used two retrograde tracers to map the connections from the amygdala (central and basolateral area nuclei) and mPFC to the LHA in detail, and to determine whether amygdalar pathways to the mPFC and to LHA originate from the same or different neurons. One tracer was placed into a distinct mPFC area (dorsal anterior cingulate, prelimbic, infralimbic, or rostromedial orbital), and the other into dorsal or ventral LHA. We report that the central nucleus and basolateral area of the amygdala send projections to distinct LHA regions, dorsal and ventral, respectively. The basolateral area, but not central nucleus, also sends substantial projections to the mPFC, topographically organized rostrocaudal to dorsoventral. The entire mPFC, in turn, projects to the LHA, providing a separate route for potential amygdalar influence following mPFC processing. Nearly all amygdalar projections to the mPFC and to the LHA originated from different neurons suggesting amygdala and amygdala-mPFC processing influence the LHA independently, and the balance of these parallel pathways ultimately controls motivated behaviors.

摘要

杏仁核与内侧前额叶皮质(mPFC)是高度相互连接的端脑区域,对包括联想学习和决策在内的认知过程至关重要。这两个结构都强烈支配外侧下丘脑(LHA),LHA是控制进食及其他动机行为的网络的重要组成部分。因此,杏仁核 - 前额叶 - 外侧下丘脑系统具备对行为施加认知控制的良好条件。然而,该系统的组织尚不完全明确,尤其是这些复杂、异质性区域内不同细胞群之间特定神经回路的拓扑结构。本研究使用两种逆行示踪剂详细绘制了从杏仁核(中央核和基底外侧核区域)和mPFC到LHA的连接,并确定杏仁核至mPFC和至LHA的通路是否源自相同或不同的神经元。一种示踪剂被注入一个特定的mPFC区域(背侧前扣带回、前边缘区、边缘下区或吻内侧眶额区),另一种则注入背侧或腹侧LHA。我们报告称,杏仁核的中央核和基底外侧区域分别向LHA的不同区域,即背侧和腹侧发出投射。基底外侧区域而非中央核,也向mPFC发出大量投射,其拓扑结构为从前向后至从背到腹。反过来,整个mPFC向LHA投射,为mPFC处理后杏仁核的潜在影响提供了一条独立路径。几乎所有杏仁核至mPFC和至LHA的投射都源自不同的神经元,这表明杏仁核及杏仁核 - mPFC处理对LHA的影响是独立的,这些平行通路的平衡最终控制着动机行为。

相似文献

5
Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat.
Brain Struct Funct. 2007 Sep;212(2):149-79. doi: 10.1007/s00429-007-0150-4. Epub 2007 Jul 27.
8
Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning.
Neurobiol Learn Mem. 2017 May;141:27-32. doi: 10.1016/j.nlm.2017.03.006. Epub 2017 Mar 10.

引用本文的文献

1
Evaluating the effectiveness of integrating biofeedback in the treatment of aggressive outbursts (BRET-IA2): A study protocol.
PLoS One. 2025 Jul 7;20(7):e0327361. doi: 10.1371/journal.pone.0327361. eCollection 2025.
2
A magnetic resonance imaging and gut flora-based study of intake desire in overweight/obese type 2 diabetes mellitus patients.
Front Neurosci. 2025 Jun 18;19:1612722. doi: 10.3389/fnins.2025.1612722. eCollection 2025.
3
The Heart-Brain Axis: Key Concepts in Neurocardiology.
Cardiol Discov. 2025 Jun;5(2):162-177. doi: 10.1097/CD9.0000000000000156. Epub 2025 Apr 17.
4
Activation patterns in male and female forebrain areas during habituation to food and context novelty.
Brain Struct Funct. 2025 May 22;230(5):73. doi: 10.1007/s00429-025-02927-3.
7
The Role of Basolateral Amygdala and Medial Prefrontal Cortex in Fear: A Systematic Review.
Cureus. 2025 Jan 29;17(1):e78198. doi: 10.7759/cureus.78198. eCollection 2025 Jan.
10
Identification of a stress-responsive subregion of the basolateral amygdala in male rats.
Neuropsychopharmacology. 2024 Dec;49(13):1989-1999. doi: 10.1038/s41386-024-01927-x. Epub 2024 Aug 9.

本文引用的文献

1
Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat.
Front Syst Neurosci. 2015 May 27;9:66. doi: 10.3389/fnsys.2015.00066. eCollection 2015.
2
Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues.
Physiol Behav. 2015 Dec 1;152(Pt B):402-7. doi: 10.1016/j.physbeh.2015.05.037. Epub 2015 Jun 3.
3
Amygdala-prefrontal interactions in (mal)adaptive learning.
Trends Neurosci. 2015 Mar;38(3):158-66. doi: 10.1016/j.tins.2014.12.007. Epub 2015 Jan 9.
5
Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions.
Neuroscience. 2015 Feb 12;286:187-202. doi: 10.1016/j.neuroscience.2014.11.026. Epub 2014 Nov 22.
6
Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals.
Nat Neurosci. 2014 Sep;17(9):1240-8. doi: 10.1038/nn.3767. Epub 2014 Jul 27.
7
Role of orexin/hypocretin in conditioned sucrose-seeking in female rats.
Neuropharmacology. 2014 Nov;86:97-102. doi: 10.1016/j.neuropharm.2014.07.007. Epub 2014 Jul 15.
9
Long-range connectivity defines behavioral specificity of amygdala neurons.
Neuron. 2014 Jan 22;81(2):428-37. doi: 10.1016/j.neuron.2013.11.006.
10
Medial prefrontal D1 dopamine neurons control food intake.
Nat Neurosci. 2014 Feb;17(2):248-53. doi: 10.1038/nn.3625. Epub 2014 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验