Belaidi Abdel A, Röper Juliane, Arjune Sita, Krizowski Sabina, Trifunovic Aleksandra, Schwarz Guenter
Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Zuelpicher Straße 47, 50674 Cologne, Germany.
CECAD Research Center, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
Biochem J. 2015 Jul 15;469(2):211-21. doi: 10.1042/BJ20140768.
Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO.
哺乳动物亚硫酸盐氧化酶(SO)是一种二聚体酶,由一个钼辅因子(Moco)和含血红素结构域组成,催化将有毒的亚硫酸盐氧化为硫酸盐。亚硫酸盐氧化后,电子从Moco经血红素辅因子传递至末端电子受体细胞色素c。相比之下,植物SO(PSO)缺乏血红素结构域,电子从Moco穿梭至分子氧。鉴于植物和哺乳动物SO的Moco结构域高度相似,决定PSO对氧反应性的因素仍不清楚。在本研究中,我们构建了哺乳动物血红素缺陷型和截短型SO变体,并通过过氧化氢生成和氧消耗研究证明了它们对氧的反应性。我们发现Moco和血红素之间的分子内电子转移与SO对氧的反应性呈负相关。血红素缺陷型SO变体表现出与PSO类似的氧依赖性亚硫酸盐氧化,在基于细胞的实验中使用血红素缺陷型人SO进一步证实了这一点。这一发现表明,由于SO活性丧失会导致严重的神经退行性变,有可能在亚硫酸盐解毒中使用对氧有反应性的SO变体。因此,我们评估了聚乙二醇连接(聚乙二醇化)作为一种修饰方法在未来使用对氧有反应性的SO变体进行酶替代治疗中的潜在用途,这种变体可能利用血液中溶解的氧作为电子受体。聚乙二醇化已被证明可延长其他治疗性蛋白质的半衰期。聚乙二醇化导致SO多达八个表面暴露的赖氨酸残基发生修饰,与野生型SO相比,构象稳定性增加且动力学性质相似。