Suppr超能文献

成功:氨基酸的进化和结构特性证明对琥珀酰化位点预测有效。

Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction.

机构信息

Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.

Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.

出版信息

BMC Genomics. 2018 Jan 19;19(Suppl 1):923. doi: 10.1186/s12864-017-4336-8.

Abstract

BACKGROUND

Post-translational modification is considered an important biological mechanism with critical impact on the diversification of the proteome. Although a long list of such modifications has been studied, succinylation of lysine residues has recently attracted the interest of the scientific community. The experimental detection of succinylation sites is an expensive process, which consumes a lot of time and resources. Therefore, computational predictors of this covalent modification have emerged as a last resort to tackling lysine succinylation.

RESULTS

In this paper, we propose a novel computational predictor called 'Success', which efficiently uses the structural and evolutionary information of amino acids for predicting succinylation sites. To do this, each lysine was described as a vector that combined the above information of surrounding amino acids. We then designed a support vector machine with a radial basis function kernel for discriminating between succinylated and non-succinylated residues. We finally compared the Success predictor with three state-of-the-art predictors in the literature. As a result, our proposed predictor showed a significant improvement over the compared predictors in statistical metrics, such as sensitivity (0.866), accuracy (0.838) and Matthews correlation coefficient (0.677) on a benchmark dataset.

CONCLUSIONS

The proposed predictor effectively uses the structural and evolutionary information of the amino acids surrounding a lysine. The bigram feature extraction approach, while retaining the same number of features, facilitates a better description of lysines. A support vector machine with a radial basis function kernel was used to discriminate between modified and unmodified lysines. The aforementioned aspects make the Success predictor outperform three state-of-the-art predictors in succinylation detection.

摘要

背景

翻译后修饰被认为是一种重要的生物学机制,对蛋白质组的多样化具有关键影响。尽管已经研究了一长串这样的修饰,但赖氨酸残基的琥珀酰化最近引起了科学界的兴趣。翻译后修饰位点的实验检测是一个昂贵的过程,消耗了大量的时间和资源。因此,这种共价修饰的计算预测器已经成为解决赖氨酸琥珀酰化问题的最后手段。

结果

在本文中,我们提出了一种名为“Success”的新型计算预测器,它有效地利用了氨基酸的结构和进化信息来预测琥珀酰化位点。为此,每个赖氨酸都被描述为一个向量,该向量结合了周围氨基酸的上述信息。然后,我们设计了一个带有径向基函数核的支持向量机,用于区分琥珀酰化和非琥珀酰化残基。最后,我们将 Success 预测器与文献中的三个最新预测器进行了比较。结果表明,在统计指标上,如灵敏度(0.866)、准确度(0.838)和马修斯相关系数(0.677),我们提出的预测器在基准数据集上显著优于比较预测器。

结论

所提出的预测器有效地利用了氨基酸周围的结构和进化信息。双元特征提取方法在保留相同数量特征的同时,更好地描述了赖氨酸。支持向量机带有径向基函数核,用于区分修饰和未修饰的赖氨酸。上述方面使得 Success 预测器在琥珀酰化检测方面优于三个最新的预测器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8865/5781056/9f677cf2b592/12864_2017_4336_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验