Suppr超能文献

基于锥形纳米孔的电渗泵浦与离子浓度极化

Electro-osmotic pumping and ion-concentration polarization based on conical nanopores.

作者信息

Yeh Hung-Chun, Chang Chih-Chang, Yang Ruey-Jen

机构信息

Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan.

Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062302. doi: 10.1103/PhysRevE.91.062302. Epub 2015 Jun 9.

Abstract

A numerical investigation is performed into the characteristics of an electro-osmotic pump consisting of a negatively charged conical nanopore. It is shown that the dependence of the flow rectification effect on the bias direction is the reverse of that of the ion current rectification effect. Moreover, the nozzle mode (i.e., the bias is applied from the base side of the nanopore to the tip side) has a higher flow rate compared to the diffuser mode (i.e., the bias is applied from the tip side of the nanopore to the base side). The results showed that the ion-concentration polarization effect occurred inside the conical nanopore, resulting in surface conduction dominating in the ionic current. The ions inside the nanopore are depleted and enriched under the nozzle mode and the diffuser mode, respectively. As a result, the electro-osmotic pump yields a greater pumping pressure, flow rate, and energy conversion efficiency when operating in the nozzle mode. In addition, we also investigated the flow rate rectification behavior for the conical nanopore. The best flow rate rectification factor in this work is 2.06 for an electrolyte concentration of 10(-3) M.

摘要

对由带负电的锥形纳米孔组成的电渗泵特性进行了数值研究。结果表明,流动整流效应与偏置方向的依赖关系与离子电流整流效应相反。此外,喷嘴模式(即偏置从纳米孔的基部侧向尖端侧施加)与扩散器模式(即偏置从纳米孔的尖端侧向基部侧施加)相比具有更高的流速。结果表明,离子浓度极化效应发生在锥形纳米孔内部,导致表面传导在离子电流中占主导地位。纳米孔内的离子在喷嘴模式和扩散器模式下分别耗尽和富集。因此,电渗泵在喷嘴模式下运行时产生更大的泵送压力、流速和能量转换效率。此外,我们还研究了锥形纳米孔的流速整流行为。在这项工作中,对于10(-3) M的电解质浓度,最佳流速整流因子为2.06。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验