Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States.
J Am Chem Soc. 2011 Aug 31;133(34):13300-3. doi: 10.1021/ja205773a. Epub 2011 Aug 5.
Ion current rectification that occurs in conical-shaped glass nanopores in low ionic strength solutions is shown to be dependent on the rate of pressure-driven electrolyte flow through the nanopore, decreasing with increasing flow rate. The dependence of the i-V response on pressure is due to the disruption of cation and anion distributions at equilibrium within the nanopore. Because the flow rate is proportional to the third power of the nanopore orifice radius, the pressure-driven flow can eliminate rectification in nanopores with radii of ∼200 nm but has a negligible influence on rectification in a smaller nanopore with a radius of ∼30 nm. The experimental results are in qualitative agreement with predictions based on finite-element simulations used to solve simultaneously the Nernst-Planck, Poisson, and Navier-Stokes equations for ion fluxes in a moving electrolyte within a conical nanopore.
在低离子强度溶液中圆锥形玻璃纳米孔中发生的离子电流整流被证明取决于通过纳米孔的压力驱动电解质流动的速率,随着流速的增加而减小。i-V 响应对压力的依赖性是由于在纳米孔内平衡时阳离子和阴离子分布的破坏。由于流速与纳米孔口半径的立方成正比,因此压力驱动的流动可以消除半径约为 200nm 的纳米孔中的整流,但对半径约为 30nm 的较小纳米孔中的整流几乎没有影响。实验结果与基于有限元模拟的预测定性一致,这些模拟用于同时求解纳锥型纳米孔内移动电解质中的 Nernst-Planck、Poisson 和 Navier-Stokes 方程,以计算离子通量。