Suppr超能文献

网络中的层次链接聚类算法

Hierarchical link clustering algorithm in networks.

作者信息

Bodlaj Jernej, Batagelj Vladimir

机构信息

University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000 Ljubljana, Slovenia.

University of Ljubljana, Faculty of Mathematics and Physics, Jadranska ulica 19, 1000 Ljubljana, Slovenia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062814. doi: 10.1103/PhysRevE.91.062814. Epub 2015 Jun 24.

Abstract

Hierarchical network clustering is an approach to find tightly and internally connected clusters (groups or communities) of nodes in a network based on its structure. Instead of nodes, it is possible to cluster links of the network. The sets of nodes belonging to clusters of links can overlap. While overlapping clusters of nodes are not always expected, they are natural in many applications. Using appropriate dissimilarity measures, we can complement the clustering strategy to consider, for example, the semantic meaning of links or nodes based on their properties. We propose a new hierarchical link clustering algorithm which in comparison to existing algorithms considers node and/or link properties (descriptions, attributes) of the input network alongside its structure using monotonic dissimilarity measures. The algorithm determines communities that form connected subnetworks (relational constraint) containing locally similar nodes with respect to their description. It is only implicitly based on the corresponding line graph of the input network, thus reducing its space and time complexities. We investigate both complexities analytically and statistically. Using provided dissimilarity measures, our algorithm can, in addition to the general overlapping community structure of input networks, uncover also related subregions inside these communities in a form of hierarchy. We demonstrate this ability on real-world and artificial network examples.

摘要

层次网络聚类是一种基于网络结构在网络中寻找紧密且内部相连的节点簇(组或社区)的方法。除了对节点进行聚类,也可以对网络的链接进行聚类。属于链接簇的节点集可以重叠。虽然节点的重叠簇并非总是预期的,但在许多应用中却是自然存在的。使用适当的差异度量,我们可以补充聚类策略,例如基于链接或节点的属性来考虑它们的语义含义。我们提出了一种新的层次链接聚类算法,与现有算法相比,该算法使用单调差异度量,在考虑输入网络结构的同时,还考虑其节点和/或链接属性(描述、属性)。该算法确定形成连接子网(关系约束)的社区,这些子网包含在描述方面局部相似的节点。它仅隐式地基于输入网络的相应线图,从而降低其空间和时间复杂度。我们从分析和统计两方面研究这两种复杂度。使用提供的差异度量,我们的算法除了能揭示输入网络的一般重叠社区结构外,还能以层次形式揭示这些社区内的相关子区域。我们在真实世界和人工网络示例上展示了这种能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验