Suppr超能文献

非参数贝叶斯图模型揭示静息态功能磁共振成像中的群落结构。

Non-parametric Bayesian graph models reveal community structure in resting state fMRI.

作者信息

Andersen Kasper Winther, Madsen Kristoffer H, Siebner Hartwig Roman, Schmidt Mikkel N, Mørup Morten, Hansen Lars Kai

机构信息

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Matematiktorvet, Bygning 303 B, 2800 Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650 Hvidovre, Denmark.

Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650 Hvidovre, Denmark.

出版信息

Neuroimage. 2014 Oct 15;100:301-15. doi: 10.1016/j.neuroimage.2014.05.083. Epub 2014 Jun 7.

Abstract

Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian models for node clustering in complex networks. In particular, we test their ability to predict unseen data and their ability to reproduce clustering across datasets. The three generative models considered are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and the Infinite Diagonal Model (IDM). The models define probabilities of generating links within and between clusters and the difference between the models lies in the restrictions they impose upon the between-cluster link probabilities. IRM is the most flexible model with no restrictions on the probabilities of links between clusters. BCD restricts the between-cluster link probabilities to be strictly lower than within-cluster link probabilities to conform to the community structure typically seen in social networks. IDM only models a single between-cluster link probability, which can be interpreted as a background noise probability. These probabilistic models are compared against three other approaches for node clustering, namely Infomap, Louvain modularity, and hierarchical clustering. Using 3 different datasets comprising healthy volunteers' rs-fMRI we found that the BCD model was in general the most predictive and reproducible model. This suggests that rs-fMRI data exhibits community structure and furthermore points to the significance of modeling heterogeneous between-cluster link probabilities.

摘要

使用网络模型对静息态功能磁共振成像(rs-fMRI)数据进行建模越来越受到关注。通常希望将节点分组为簇,以解释节点之间的通信模式。在本研究中,我们考虑了三种不同的非参数贝叶斯模型用于复杂网络中的节点聚类。具体而言,我们测试了它们预测未见数据的能力以及在不同数据集上重现聚类的能力。所考虑的三种生成模型分别是无限关系模型(IRM)、贝叶斯社区检测(BCD)和无限对角模型(IDM)。这些模型定义了簇内和簇间生成链接的概率,模型之间的差异在于它们对簇间链接概率所施加的限制。IRM是最灵活的模型,对簇间链接概率没有限制。BCD将簇间链接概率限制为严格低于簇内链接概率,以符合社交网络中通常所见的社区结构。IDM仅对单个簇间链接概率进行建模,可将其解释为背景噪声概率。将这些概率模型与其他三种节点聚类方法进行比较,即Infomap、Louvain模块化和层次聚类。使用包含健康志愿者rs-fMRI的3个不同数据集,我们发现BCD模型总体上是最具预测性和可重复性的模型。这表明rs-fMRI数据呈现出社区结构,并且进一步指出了对异质簇间链接概率进行建模的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验