Biomolecular Photonics, Department of Physics, University of Bielefeld , Universitätsstraße 25, 33615 Bielefeld, Germany.
Department of Biotechnology & Biophysics, Biozentrum, Julius Maximilians University Würzburg , Am Hubland, 97075 Würzburg, Germany.
ACS Nano. 2015 Aug 25;9(8):8122-30. doi: 10.1021/acsnano.5b02220. Epub 2015 Jul 21.
We describe a method for the deposition of minute amounts of fluorophore-labeled oligonucleotides with high local precision in conductive and transparent solid layers of poly(vinyl alcohol) (PVA) doped with glycerin and cysteamine (PVA-G-C layers). Deposition of negatively charged fluorescent molecules was accomplished with a setup based on a scanning ion conductance microscope (SICM) using nanopipettes with tip diameters of ∼100 nm by using the ion flux flowing between two electrodes through the nanopipette. To investigate the precision of the local deposition process, we performed in situ super-resolution microscopy by direct stochastic optical reconstruction microscopy (dSTORM). Exploiting the single-molecule sensitivity and reliability of dSTORM, we determine the number of fluorescent molecules deposited in single spots. The correlation of applied charge and number of deposited molecules enables the quantification of delivered molecules by measuring the charge during the delivery process. We demonstrate the reproducible deposition of 3-168 fluorescent molecules in single spots and the creation of fluorescent structures. The fluorescent structures are highly stable and can be reused several times.
我们描述了一种在掺甘油和半胱氨酸的聚(乙烯醇)(PVA-G-C)导电透明固体层中以高精度局部沉积微量荧光标记寡核苷酸的方法。通过使用具有约 100nm 尖端直径的纳米移液器,基于扫描离子电导显微镜(SICM)的设置,利用在通过纳米移液器的两个电极之间流动的离子流,来完成带负电荷的荧光分子的沉积。为了研究局部沉积过程的精度,我们通过直接随机光学重建显微镜(dSTORM)进行了原位超分辨率显微镜研究。利用 dSTORM 的单分子灵敏度和可靠性,我们确定了在单个斑点中沉积的荧光分子的数量。通过在输送过程中测量电荷,可以将施加的电荷与沉积的分子数量相关联,从而对输送的分子进行定量。我们证明了可以在单个斑点中重复沉积 3-168 个荧光分子,并创建荧光结构。荧光结构高度稳定,可以重复使用几次。