Huang Bo, Wang Wenqin, Bates Mark, Zhuang Xiaowei
Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
Science. 2008 Feb 8;319(5864):810-3. doi: 10.1126/science.1153529. Epub 2008 Jan 3.
Recent advances in far-field fluorescence microscopy have led to substantial improvements in image resolution, achieving a near-molecular resolution of 20 to 30 nanometers in the two lateral dimensions. Three-dimensional (3D) nanoscale-resolution imaging, however, remains a challenge. We demonstrated 3D stochastic optical reconstruction microscopy (STORM) by using optical astigmatism to determine both axial and lateral positions of individual fluorophores with nanometer accuracy. Iterative, stochastic activation of photoswitchable probes enables high-precision 3D localization of each probe, and thus the construction of a 3D image, without scanning the sample. Using this approach, we achieved an image resolution of 20 to 30 nanometers in the lateral dimensions and 50 to 60 nanometers in the axial dimension. This development allowed us to resolve the 3D morphology of nanoscopic cellular structures.
远场荧光显微镜技术的最新进展已使图像分辨率得到显著提高,在两个横向维度上实现了20至30纳米的近分子分辨率。然而,三维(3D)纳米级分辨率成像仍然是一项挑战。我们通过使用光学像散以纳米精度确定单个荧光团的轴向和横向位置,展示了三维随机光学重建显微镜(STORM)技术。可光开关探针的迭代随机激活实现了每个探针的高精度三维定位,从而在不扫描样品的情况下构建三维图像。使用这种方法,我们在横向维度上实现了20至30纳米的图像分辨率,在轴向维度上实现了50至60纳米的图像分辨率。这一进展使我们能够解析纳米级细胞结构的三维形态。