Zheng Zhao Qiang, Zhu Lian Feng, Wang Bing
Institute of Micro-nano Optoelectronic Technology, Shenzhen Key Lab of Micro-nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China,
Nanoscale Res Lett. 2015 Dec;10(1):1002. doi: 10.1186/s11671-015-1002-4. Epub 2015 Jul 15.
Indium oxide (In2O3) tower-shaped nanostructure gas sensors have been fabricated on Cr comb-shaped interdigitating electrodes with relatively narrower interspace of 1.5 μm using thermal evaporation of the mixed powders of In2O3 and active carbon. The Schottky contact between the In2O3 nanotower and the Cr comb-shaped interdigitating electrode forms the Cr/In2O3 nanotower Schottky diode, and the corresponding temperature-dependent I-V characteristics have been measured. The diode exhibits a low Schottky barrier height of 0.45 eV and ideality factor of 2.93 at room temperature. The In2O3 nanotower gas sensors have excellent gas-sensing characteristics to hydrogen concentration ranging from 2 to 1000 ppm at operating temperature of 120-275 °C, such as high response (83 % at 240 °C to 1000 ppm H2), good selectivity (response to H2, CH4, C2H2, and C3H8), and small deviation from the ideal value of power exponent β (0.48578 at 240 °C). The sensors show fine long-term stability during exposure to 1000 ppm H2 under operating temperature of 240 °C in 30 days. Lots of oxygen vacancies and chemisorbed oxygen ions existing in the In2O3 nanotowers according to the x-ray photoelectron spectroscopy (XPS) results, the change of Schottky barrier height in the Cr/In2O3 Schottky junction, and the thermoelectronic emission due to the contact between two In2O3 nanotowers mainly contribute for the H2 sensing mechanism. The growth mechanism of the In2O3 nanotowers can be described to be the Vapor-Solid (VS) process.
通过热蒸发氧化铟(In₂O₃)和活性炭的混合粉末,在间距相对较窄(1.5μm)的铬梳状叉指电极上制备了氧化铟(In₂O₃)塔状纳米结构气体传感器。In₂O₃纳米塔与铬梳状叉指电极之间的肖特基接触形成了Cr/In₂O₃纳米塔肖特基二极管,并测量了相应的温度依赖I-V特性。该二极管在室温下表现出0.45eV的低肖特基势垒高度和2.93的理想因子。In₂O₃纳米塔气体传感器在120-275°C的工作温度下,对2至1000ppm的氢气浓度具有优异的气敏特性,如高响应率(240°C时对1000ppm H₂的响应率为83%)、良好的选择性(对H₂、CH₄、C₂H₂和C₃H₈的响应)以及与功率指数β理想值的小偏差(240°C时为0.48578)。在240°C的工作温度下,传感器在30天内暴露于1000ppm H₂时表现出良好的长期稳定性。根据X射线光电子能谱(XPS)结果,In₂O₃纳米塔中存在大量氧空位和化学吸附的氧离子,Cr/In₂O₃肖特基结中肖特基势垒高度的变化以及两个In₂O₃纳米塔之间接触引起的热电子发射是H₂传感机制的主要贡献因素。In₂O₃纳米塔的生长机制可描述为气-固(VS)过程。