Freedman Laurence S, Midthune Douglas, Dodd Kevin W, Carroll Raymond J, Kipnis Victor
Information Management Services, Inc., Rockville, MD, U.S.A.
Gertner Institute, Biostatistics Unit, Tel Hashomer, Israel.
Stat Med. 2015 Nov 30;34(27):3590-605. doi: 10.1002/sim.6577. Epub 2015 Jul 14.
Most statistical methods that adjust analyses for measurement error assume that the target exposure T is a fixed quantity for each individual. However, in many applications, the value of T for an individual varies with time. We develop a model that accounts for such variation, describing the model within the framework of a meta-analysis of validation studies of dietary self-report instruments, where the reference instruments are biomarkers. We demonstrate that in this application, the estimates of the attenuation factor and correlation with true intake, key parameters quantifying the accuracy of the self-report instrument, are sometimes substantially modified under the time-varying exposure model compared with estimates obtained under a traditional fixed-exposure model. We conclude that accounting for the time element in measurement error problems is potentially important.
大多数针对测量误差调整分析的统计方法都假定,对于每个个体而言,目标暴露量T是一个固定值。然而,在许多应用中,个体的T值会随时间变化。我们开发了一个考虑此类变化的模型,并在饮食自我报告工具验证研究的荟萃分析框架内描述该模型,其中参考工具为生物标志物。我们证明,在此应用中,与传统固定暴露模型下获得的估计值相比,在时变暴露模型下,衰减因子估计值以及与真实摄入量的相关性(量化自我报告工具准确性的关键参数)有时会有显著变化。我们得出结论,在测量误差问题中考虑时间因素可能很重要。