Kipnis Victor, Midthune Douglas, Buckman Dennis W, Dodd Kevin W, Guenther Patricia M, Krebs-Smith Susan M, Subar Amy F, Tooze Janet A, Carroll Raymond J, Freedman Laurence S
Biometry, Division of Cancer Prevention, National Cancer Institute, 6130 Executive Boulevard, EPN-3131, Bethesda, Maryland 20892-7354, USA.
Biometrics. 2009 Dec;65(4):1003-10. doi: 10.1111/j.1541-0420.2009.01223.x.
Dietary assessment of episodically consumed foods gives rise to nonnegative data that have excess zeros and measurement error. Tooze et al. (2006, Journal of the American Dietetic Association 106, 1575-1587) describe a general statistical approach (National Cancer Institute method) for modeling such food intakes reported on two or more 24-hour recalls (24HRs) and demonstrate its use to estimate the distribution of the food's usual intake in the general population. In this article, we propose an extension of this method to predict individual usual intake of such foods and to evaluate the relationships of usual intakes with health outcomes. Following the regression calibration approach for measurement error correction, individual usual intake is generally predicted as the conditional mean intake given 24HR-reported intake and other covariates in the health model. One feature of the proposed method is that additional covariates potentially related to usual intake may be used to increase the precision of estimates of usual intake and of diet-health outcome associations. Applying the method to data from the Eating at America's Table Study, we quantify the increased precision obtained from including reported frequency of intake on a food frequency questionnaire (FFQ) as a covariate in the calibration model. We then demonstrate the method in evaluating the linear relationship between log blood mercury levels and fish intake in women by using data from the National Health and Nutrition Examination Survey, and show increased precision when including the FFQ information. Finally, we present simulation results evaluating the performance of the proposed method in this context.
对偶尔食用的食物进行膳食评估会产生具有过多零值和测量误差的非负数据。图兹等人(2006年,《美国饮食协会杂志》106卷,第1575 - 1587页)描述了一种通用的统计方法(美国国家癌症研究所方法),用于对通过两次或更多次24小时膳食回顾(24HRs)报告的此类食物摄入量进行建模,并展示了其用于估计普通人群中该食物通常摄入量分布的用途。在本文中,我们提出了该方法的一种扩展,以预测此类食物的个体通常摄入量,并评估通常摄入量与健康结果之间的关系。遵循测量误差校正的回归校准方法,个体通常摄入量通常被预测为在健康模型中给定24HR报告摄入量和其他协变量时的条件平均摄入量。所提出方法的一个特点是,可以使用可能与通常摄入量相关的其他协变量来提高通常摄入量估计以及饮食 - 健康结果关联估计的精度。将该方法应用于“在美国餐桌用餐研究”的数据,我们量化了在校准模型中纳入食物频率问卷(FFQ)上报告的摄入频率作为协变量所获得的精度提高。然后,我们通过使用美国国家健康与营养检查调查的数据,展示了该方法在评估女性血液汞水平对数与鱼类摄入量之间线性关系时的应用,并表明纳入FFQ信息时精度有所提高。最后,我们展示了在此背景下评估所提出方法性能的模拟结果。