Suppr超能文献

SNBRFinder:一种基于序列的混合算法,用于增强对核酸结合残基的预测。

SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

作者信息

Yang Xiaoxia, Wang Jia, Sun Jun, Liu Rong

机构信息

Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.

出版信息

PLoS One. 2015 Jul 15;10(7):e0133260. doi: 10.1371/journal.pone.0133260. eCollection 2015.

Abstract

Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

摘要

蛋白质-核酸相互作用是各种基本生物过程的核心。能够可靠识别蛋白质序列中DNA和RNA结合残基的自动化方法正变得越来越重要。当前大多数算法依赖基于特征的预测,但其准确性仍有待进一步提高。在此,我们通过合并特征预测器SNBRFinderF和模板预测器SNBRFinderT,提出了一种基于序列的混合算法SNBRFinder(基于序列的核酸结合残基查找器)。SNBRFinderF使用支持向量机建立,其输入包括序列概况和其他互补序列描述符,而SNBRFinderT则通过基于概况隐马尔可夫模型的序列比对算法实现,以捕获查询序列的弱同源模板。实验结果表明,SNBRFinderF明显优于常用的基于序列概况的预测器,并且SNBRFinderT可以实现与基于结构的模板方法相当的性能。利用这两个预测器之间的互补关系,SNBRFinder合理地提高了DNA和RNA结合残基预测的性能。更重要的是,基于序列的混合预测相对于我们之前基于结构的预测达到了有竞争力的性能。我们广泛而严格的比较表明,SNBRFinder相对于现有的基于序列的预测算法具有明显优势。通过建立一个易于使用的网络服务器(可在http://ibi.hzau.edu.cn/SNBRFinder免费访问),突出了我们算法的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验