Suppr超能文献

基于结构信息解析和预测核酸中的不同类型结合位点。

Dissecting and predicting different types of binding sites in nucleic acids based on structural information.

机构信息

College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab411.

Abstract

The biological functions of DNA and RNA generally depend on their interactions with other molecules, such as small ligands, proteins and nucleic acids. However, our knowledge of the nucleic acid binding sites for different interaction partners is very limited, and identification of these critical binding regions is not a trivial work. Herein, we performed a comprehensive comparison between binding and nonbinding sites and among different categories of binding sites in these two nucleic acid classes. From the structural perspective, RNA may interact with ligands through forming binding pockets and contact proteins and nucleic acids using protruding surfaces, while DNA may adopt regions closer to the middle of the chain to make contacts with other molecules. Based on structural information, we established a feature-based ensemble learning classifier to identify the binding sites by fully using the interplay among different machine learning algorithms, feature spaces and sample spaces. Meanwhile, we designed a template-based classifier by exploiting structural conservation. The complementarity between the two classifiers motivated us to build an integrative framework for improving prediction performance. Moreover, we utilized a post-processing procedure based on the random walk algorithm to further correct the integrative predictions. Our unified prediction framework yielded promising results for different binding sites and outperformed existing methods.

摘要

DNA 和 RNA 的生物学功能通常依赖于它们与其他分子的相互作用,如小分子配体、蛋白质和核酸。然而,我们对不同相互作用伙伴的核酸结合位点的了解非常有限,而且确定这些关键结合区域并非易事。在此,我们对这两类核酸中的结合和非结合位点以及不同类别结合位点之间进行了全面比较。从结构的角度来看,RNA 可能通过形成结合口袋与配体相互作用,并使用突出的表面与蛋白质和核酸接触,而 DNA 可能采用更靠近链中间的区域与其他分子接触。基于结构信息,我们建立了基于特征的集成学习分类器,通过充分利用不同机器学习算法、特征空间和样本空间之间的相互作用,来识别结合位点。同时,我们设计了一个基于模板的分类器,利用结构保守性。这两个分类器的互补性促使我们构建了一个集成框架,以提高预测性能。此外,我们利用基于随机游走算法的后处理过程进一步修正集成预测。我们的统一预测框架对不同的结合位点产生了有希望的结果,并优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ed8/8769709/c71c63d5a138/bbab411f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验