Sugimoto Chie, Hasegawa Atsuhiko, Saito Yohei, Fukuyo Yayoi, Chiu Kevin B, Cai Yanhui, Breed Matthew W, Mori Kazuyasu, Roy Chad J, Lackner Andrew A, Kim Woong-Ki, Didier Elizabeth S, Kuroda Marcelo J
Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433;
Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433;
J Immunol. 2015 Aug 15;195(4):1774-81. doi: 10.4049/jimmunol.1500522. Epub 2015 Jul 15.
Monocyte and dendritic cell (DC) development was evaluated using in vivo BrdU pulse-chase analyses in rhesus macaques, and phenotype analyses of these cells in blood also were assessed by immunostaining and flow cytometry for comparisons among rhesus, cynomolgus, and pigtail macaques, as well as African green monkeys and humans. The nonhuman primate species and humans have three subsets of monocytes, CD14(+)CD16(-), CD14(+)CD16(+), and CD14(-)CD16(+) cells, which correspond to classical, intermediate, and nonclassical monocytes, respectively. In addition, there exist presently two subsets of DC, BDCA-1(+) myeloid DC and CD123(+) plasmacytoid DC, that were first confirmed in rhesus macaque blood. Following BrdU inoculation, labeled cells first appeared in CD14(+)CD16(-) monocytes, then in CD14(+)CD16(+) cells, and finally in CD14(-)CD16(+) cells, thus defining different stages of monocyte maturation. A fraction of the classical CD14(+)CD16(-) monocytes gradually expressed CD16(+) to become CD16(+)CD14(+) cells and subsequently matured into the nonclassical CD14(-)CD16(+) cell subset. The differentiation kinetics of BDCA-1(+) myeloid DC and CD123(+) plasmacytoid DC were distinct from the monocyte subsets, indicating differences in their myeloid cell origins. Results from studies utilizing nonhuman primates provide valuable information about the turnover, kinetics, and maturation of the different subsets of monocytes and DC using approaches that cannot readily be performed in humans and support further analyses to continue examining the unique myeloid cell origins that may be applied to address disease pathogenesis mechanisms and intervention strategies in humans.
利用体内BrdU脉冲追踪分析评估恒河猴的单核细胞和树突状细胞(DC)发育,并通过免疫染色和流式细胞术对这些细胞在血液中的表型进行分析,以比较恒河猴、食蟹猴、猪尾猕猴以及非洲绿猴和人类之间的差异。非人灵长类动物和人类有三种单核细胞亚群,即CD14(+)CD16(-)、CD14(+)CD16(+)和CD14(-)CD16(+)细胞,分别对应经典单核细胞、中间单核细胞和非经典单核细胞。此外,目前存在两种DC亚群,即BDCA-1(+)髓样DC和CD123(+)浆细胞样DC,它们首先在恒河猴血液中得到证实。接种BrdU后,标记细胞首先出现在CD14(+)CD16(-)单核细胞中,然后出现在CD14(+)CD16(+)细胞中,最后出现在CD14(-)CD16(+)细胞中,从而确定了单核细胞成熟的不同阶段。一部分经典的CD14(+)CD16(-)单核细胞逐渐表达CD16(+),成为CD16(+)CD14(+)细胞,随后成熟为非经典的CD14(-)CD16(+)细胞亚群。BDCA-1(+)髓样DC和CD123(+)浆细胞样DC的分化动力学与单核细胞亚群不同,表明它们的髓样细胞起源存在差异。利用非人灵长类动物进行的研究结果提供了有关单核细胞和DC不同亚群的更新、动力学和成熟的有价值信息,这些方法在人类中不易进行,并支持进一步分析,以继续研究可能适用于解决人类疾病发病机制和干预策略的独特髓样细胞起源。