Suppr超能文献

针对纵向结局和截断纵向随访的临床事件的联合多重填补法。

Joint multiple imputation for longitudinal outcomes and clinical events that truncate longitudinal follow-up.

作者信息

Hu Bo, Li Liang, Greene Tom

机构信息

Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, U.S.A.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, U.S.A.

出版信息

Stat Med. 2016 Jul 30;35(17):2991-3006. doi: 10.1002/sim.6590. Epub 2015 Jul 15.

Abstract

Longitudinal cohort studies often collect both repeated measurements of longitudinal outcomes and times to clinical events whose occurrence precludes further longitudinal measurements. Although joint modeling of the clinical events and the longitudinal data can be used to provide valid statistical inference for target estimands in certain contexts, the application of joint models in medical literature is currently rather restricted because of the complexity of the joint models and the intensive computation involved. We propose a multiple imputation approach to jointly impute missing data of both the longitudinal and clinical event outcomes. With complete imputed datasets, analysts are then able to use simple and transparent statistical methods and standard statistical software to perform various analyses without dealing with the complications of missing data and joint modeling. We show that the proposed multiple imputation approach is flexible and easy to implement in practice. Numerical results are also provided to demonstrate its performance. Copyright © 2015 John Wiley & Sons, Ltd.

摘要

纵向队列研究通常会收集纵向结局的重复测量数据以及临床事件发生的时间,而临床事件一旦发生就无法进行进一步的纵向测量。尽管在某些情况下,临床事件和纵向数据的联合建模可用于为目标估计量提供有效的统计推断,但由于联合模型的复杂性和所涉及的密集计算,联合模型在医学文献中的应用目前相当有限。我们提出一种多重填补方法,用于联合填补纵向和临床事件结局的缺失数据。有了完整的填补数据集,分析师就能够使用简单透明的统计方法和标准统计软件来进行各种分析,而无需处理缺失数据和联合建模的复杂性。我们表明,所提出的多重填补方法在实践中灵活且易于实施。还提供了数值结果以证明其性能。版权所有© 2015约翰·威利父子有限公司。

相似文献

1
Joint multiple imputation for longitudinal outcomes and clinical events that truncate longitudinal follow-up.
Stat Med. 2016 Jul 30;35(17):2991-3006. doi: 10.1002/sim.6590. Epub 2015 Jul 15.
3
Review and evaluation of imputation methods for multivariate longitudinal data with mixed-type incomplete variables.
Stat Med. 2022 Dec 30;41(30):5844-5876. doi: 10.1002/sim.9592. Epub 2022 Oct 11.
4
Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes.
Biometrics. 2010 Mar;66(1):20-9. doi: 10.1111/j.1541-0420.2009.01273.x. Epub 2009 May 18.
5
Comparing multiple imputation methods for systematically missing subject-level data.
Res Synth Methods. 2017 Jun;8(2):136-148. doi: 10.1002/jrsm.1192. Epub 2015 Dec 17.
6
A comparison of multiple imputation methods for missing data in longitudinal studies.
BMC Med Res Methodol. 2018 Dec 12;18(1):168. doi: 10.1186/s12874-018-0615-6.
7
On inference of control-based imputation for analysis of repeated binary outcomes with missing data.
J Biopharm Stat. 2017;27(3):358-372. doi: 10.1080/10543406.2017.1289957. Epub 2017 Feb 7.
8
A multiple imputation approach for MNAR mechanisms compatible with Heckman's model.
Stat Med. 2016 Jul 30;35(17):2907-20. doi: 10.1002/sim.6902. Epub 2016 Feb 18.
9
Multiple imputation in the presence of non-normal data.
Stat Med. 2017 Feb 20;36(4):606-617. doi: 10.1002/sim.7173. Epub 2016 Nov 15.
10
Model selection of generalized estimating equations with multiply imputed longitudinal data.
Biom J. 2013 Nov;55(6):899-911. doi: 10.1002/bimj.201200236. Epub 2013 Aug 23.

本文引用的文献

1
Analysis of transplant urgency and benefit via multiple imputation.
Stat Med. 2014 Nov 20;33(26):4655-70. doi: 10.1002/sim.6250. Epub 2014 Jul 24.
2
Nonparametric multistate representations of survival and longitudinal data with measurement error.
Stat Med. 2012 Sep 20;31(21):2303-17. doi: 10.1002/sim.5369. Epub 2012 Apr 26.
3
Multiple imputation using chained equations: Issues and guidance for practice.
Stat Med. 2011 Feb 20;30(4):377-99. doi: 10.1002/sim.4067. Epub 2010 Nov 30.
4
Missing data methods in longitudinal studies: a review.
Test (Madr). 2009 May 1;18(1):1-43. doi: 10.1007/s11749-009-0138-x.
5
Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes.
Biometrics. 2010 Mar;66(1):20-9. doi: 10.1111/j.1541-0420.2009.01273.x. Epub 2009 May 18.
6
Imputing missing covariate values for the Cox model.
Stat Med. 2009 Jul 10;28(15):1982-98. doi: 10.1002/sim.3618.
7
A semiparametric joint model for longitudinal and survival data with application to hemodialysis study.
Biometrics. 2009 Sep;65(3):737-45. doi: 10.1111/j.1541-0420.2008.01168.x. Epub 2009 Jan 23.
8
Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data.
Lifetime Data Anal. 2008 Dec;14(4):447-63. doi: 10.1007/s10985-008-9099-8. Epub 2008 Oct 3.
10
Multiple imputation of discrete and continuous data by fully conditional specification.
Stat Methods Med Res. 2007 Jun;16(3):219-42. doi: 10.1177/0962280206074463.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验