Suppr超能文献

用于处理具有不可忽略缺失值的临床试验纵向数据的基于插补的策略。

Imputation-based strategies for clinical trial longitudinal data with nonignorable missing values.

作者信息

Yang Xiaowei, Li Jinhui, Shoptaw Steven

机构信息

Division of Biostatistics, School of Medicine, University of California, Med Sci 1-C, Suite 200, Davis, CA 95616, USA.

出版信息

Stat Med. 2008 Jul 10;27(15):2826-49. doi: 10.1002/sim.3111.

Abstract

Biomedical research is plagued with problems of missing data, especially in clinical trials of medical and behavioral therapies adopting longitudinal design. After a literature review on modeling incomplete longitudinal data based on full-likelihood functions, this paper proposes a set of imputation-based strategies for implementing selection, pattern-mixture, and shared-parameter models for handling intermittent missing values and dropouts that are potentially nonignorable according to various criteria. Within the framework of multiple partial imputation, intermittent missing values are first imputed several times; then, each partially imputed data set is analyzed to deal with dropouts with or without further imputation. Depending on the choice of imputation model or measurement model, there exist various strategies that can be jointly applied to the same set of data to study the effect of treatment or intervention from multi-faceted perspectives. For illustration, the strategies were applied to a data set with continuous repeated measures from a smoking cessation clinical trial.

摘要

生物医学研究饱受数据缺失问题的困扰,尤其是在采用纵向设计的医学和行为疗法的临床试验中。在对基于全似然函数的不完全纵向数据建模进行文献综述之后,本文提出了一套基于插补的策略,用于实施选择模型、模式混合模型和共享参数模型,以处理根据各种标准可能不可忽略的间歇性缺失值和失访情况。在多重多重插补的框架内,首先对间歇性缺失值进行多次插补;然后,对每个部分插补后的数据集进行分析,以处理有无进一步插补的失访情况。根据插补模型或测量模型的选择,存在各种策略,这些策略可以联合应用于同一组数据,以便从多方面研究治疗或干预的效果。为了说明,这些策略被应用于一个来自戒烟临床试验的具有连续重复测量的数据集。

相似文献

2
Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial.
Drug Alcohol Depend. 2005 Mar 7;77(3):213-25. doi: 10.1016/j.drugalcdep.2004.08.018.
5
Comprehensive implementations of multiple imputation using retrieved dropouts for continuous endpoints.
BMC Med Res Methodol. 2025 Feb 21;25(1):47. doi: 10.1186/s12874-025-02494-5.
6
8
Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation.
Biometrics. 2004 Sep;60(3):820-8. doi: 10.1111/j.0006-341X.2004.00234.x.
10
Analysis of longitudinal binary data with missing data due to dropouts.
J Biopharm Stat. 2005;15(6):993-1007. doi: 10.1080/10543400500266692.

引用本文的文献

1
Predictors of urine toxicology and other biologic specimen missingness in randomized trials of substance use disorders.
Drug Alcohol Depend. 2024 Aug 1;261:111368. doi: 10.1016/j.drugalcdep.2024.111368. Epub 2024 Jun 12.
2
A survey on missing data in machine learning.
J Big Data. 2021;8(1):140. doi: 10.1186/s40537-021-00516-9. Epub 2021 Oct 27.
5
Joint multiple imputation for longitudinal outcomes and clinical events that truncate longitudinal follow-up.
Stat Med. 2016 Jul 30;35(17):2991-3006. doi: 10.1002/sim.6590. Epub 2015 Jul 15.
6
Does change in the neighborhood environment prevent obesity in older women?
Soc Sci Med. 2014 Feb;102:129-37. doi: 10.1016/j.socscimed.2013.11.047. Epub 2013 Dec 2.

本文引用的文献

1
Markov transition models for binary repeated measures with ignorable and nonignorable missing values.
Stat Methods Med Res. 2007 Aug;16(4):347-64. doi: 10.1177/0962280206071843.
3
Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial.
Drug Alcohol Depend. 2005 Mar 7;77(3):213-25. doi: 10.1016/j.drugalcdep.2004.08.018.
4
Strategies to fit pattern-mixture models.
Biostatistics. 2002 Jun;3(2):245-65. doi: 10.1093/biostatistics/3.2.245.
5
A pattern-mixture model for longitudinal binary responses with nonignorable nonresponse.
Biometrics. 2002 Dec;58(4):989-96. doi: 10.1111/j.0006-341x.2002.00989.x.
6
Smoking cessation in methadone maintenance.
Addiction. 2002 Oct;97(10):1317-28; discussion 1325. doi: 10.1046/j.1360-0443.2002.00221.x.
7
Intention-to-treat meets missing data: implications of alternate strategies for analyzing clinical trials data.
Drug Alcohol Depend. 2002 Oct 1;68(2):121-30. doi: 10.1016/s0376-8716(02)00111-4.
8
Use of summary measures to adjust for informative missingness in repeated measures data with random effects.
Biometrics. 1999 Mar;55(1):75-84. doi: 10.1111/j.0006-341x.1999.00075.x.
9
Selection models and pattern-mixture models for incomplete data with covariates.
Biometrics. 1999 Sep;55(3):978-83. doi: 10.1111/j.0006-341x.1999.00978.x.
10
Modeling repeated count data subject to informative dropout.
Biometrics. 2000 Sep;56(3):667-77. doi: 10.1111/j.0006-341x.2000.00667.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验