Suppr超能文献

事件发生时间与多变量纵向结果的联合建模:最新进展与问题

Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues.

作者信息

Hickey Graeme L, Philipson Pete, Jorgensen Andrea, Kolamunnage-Dona Ruwanthi

机构信息

Department of Biostatistics, University of Liverpool, Waterhouse Building, 1-5 Brownlow Street, Liverpool, L69 3GL, UK.

Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK.

出版信息

BMC Med Res Methodol. 2016 Sep 7;16(1):117. doi: 10.1186/s12874-016-0212-5.

Abstract

BACKGROUND

Available methods for the joint modelling of longitudinal and time-to-event outcomes have typically only allowed for a single longitudinal outcome and a solitary event time. In practice, clinical studies are likely to record multiple longitudinal outcomes. Incorporating all sources of data will improve the predictive capability of any model and lead to more informative inferences for the purpose of medical decision-making.

METHODS

We reviewed current methodologies of joint modelling for time-to-event data and multivariate longitudinal data including the distributional and modelling assumptions, the association structures, estimation approaches, software tools for implementation and clinical applications of the methodologies.

RESULTS

We found that a large number of different models have recently been proposed. Most considered jointly modelling linear mixed models with proportional hazard models, with correlation between multiple longitudinal outcomes accounted for through multivariate normally distributed random effects. So-called current value and random effects parameterisations are commonly used to link the models. Despite developments, software is still lacking, which has translated into limited uptake by medical researchers.

CONCLUSION

Although, in an era of personalized medicine, the value of multivariate joint modelling has been established, researchers are currently limited in their ability to fit these models routinely. We make a series of recommendations for future research needs.

摘要

背景

用于纵向和事件发生时间结局联合建模的现有方法通常仅允许单一纵向结局和单个事件时间。在实际中,临床研究可能会记录多个纵向结局。纳入所有数据来源将提高任何模型的预测能力,并为医学决策提供更具信息量的推断。

方法

我们回顾了用于事件发生时间数据和多变量纵向数据联合建模的当前方法,包括分布和建模假设、关联结构、估计方法、用于实施的软件工具以及这些方法的临床应用。

结果

我们发现最近提出了大量不同的模型。大多数模型考虑将线性混合模型与比例风险模型联合建模,多个纵向结局之间的相关性通过多变量正态分布随机效应来解释。所谓的当前值和随机效应参数化通常用于连接这些模型。尽管有进展,但软件仍然缺乏,这导致医学研究人员对其采用有限。

结论

尽管在个性化医疗时代,多变量联合建模的价值已得到确立,但研究人员目前在常规拟合这些模型的能力方面受到限制。我们对未来的研究需求提出了一系列建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e738/5015261/5980b4d93d83/12874_2016_212_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验