Levine David M, Dutta Noton K, Eckels Josh, Scanga Charles, Stein Catherine, Mehra Smriti, Kaushal Deepak, Karakousis Petros C, Salamon Hugh
Department of Biostatistics, University of Washington, School of Public Health, Seattle, WA, USA.
Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Tuberculosis (Edinb). 2015 Sep;95(5):570-4. doi: 10.1016/j.tube.2015.05.012. Epub 2015 Jun 30.
A major hurdle facing tuberculosis (TB) investigators who want to utilize a rapidly growing body of data from both systems biology approaches and omics technologies is the lack of a standard vocabulary for data annotation and reporting. Lacking a means to readily compare samples from different research groups, a significant quantity of potentially informative data is largely ignored by researchers. To facilitate standardizing data across studies, a simple ontology of TB terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address animal models and experimental systems, and existing clinically focused terminology was modified and adapted. This ontology can be used to annotate host TB data in public databases and collaborations, thereby standardizing database searches and allowing researchers to more easily compare results. To demonstrate the utility of a standard TB ontology for host systems biology, a web application was developed to annotate and compare human and animal model gene expression data sets.
对于那些希望利用来自系统生物学方法和组学技术的快速增长的大量数据的结核病(TB)研究人员来说,一个主要障碍是缺乏用于数据注释和报告的标准词汇表。由于缺乏一种能够轻松比较来自不同研究小组的样本的方法,大量潜在的信息数据在很大程度上被研究人员忽视了。为了促进跨研究的数据标准化,开发了一个简单的结核病术语本体,以提供用于注释数据集的通用词汇表。开发了新的术语来处理动物模型和实验系统,并对现有的以临床为重点的术语进行了修改和调整。这个本体可用于注释公共数据库和合作中的宿主结核病数据,从而使数据库搜索标准化,并使研究人员能够更轻松地比较结果。为了证明标准结核病本体在宿主系统生物学中的实用性,开发了一个网络应用程序来注释和比较人类和动物模型基因表达数据集。