Millar R W, Gallacher K, Samarelli A, Frigerio J, Chrastina D, Isella G, Dieing T, Paul D J
Opt Express. 2015 Jul 13;23(14):18193-202. doi: 10.1364/OE.23.018193.
The room temperature photoluminescence from Ge nanopillars has been extended from 1.6 μm to above 2.25 μm wavelength through the application of tensile stress from silicon nitride stressors deposited by inductively-coupled-plasma plasma-enhanced chemical-vapour-deposition. Photoluminescence measurements demonstrate biaxial equivalent tensile strains of up to ∼ 1.35% in square topped nanopillars with side lengths of 200 nm. Biaxial equivalent strains of 0.9% are observed in 300 nm square top pillars, confirmed by confocal Raman spectroscopy. Finite element modelling demonstrates that an all-around stressor layer is preferable to a top only stressor, as it increases the hydrostatic component of the strain, leading to an increased shift in the band-edge and improved uniformity over top-surface only stressors layers.
通过施加由电感耦合等离子体等离子体增强化学气相沉积法沉积的氮化硅应力源产生的拉伸应力,锗纳米柱的室温光致发光波长已从1.6μm扩展至2.25μm以上。光致发光测量表明,边长为200nm的方形顶部纳米柱中双轴等效拉伸应变高达约1.35%。共焦拉曼光谱证实,在300nm方形顶部柱中观察到双轴等效应变为0.9%。有限元模拟表明,全方位应力源层比仅顶部应力源更可取,因为它增加了应变的静水压力分量,导致带边位移增加,并且比仅顶部表面应力源层具有更好的均匀性。