Zhang Wen-Wei, Matlashewski Greg
Department of Microbiology and Immunology, McGill University, Montreal, Canada.
Department of Microbiology and Immunology, McGill University, Montreal, Canada
mBio. 2015 Jul 21;6(4):e00861. doi: 10.1128/mBio.00861-15.
The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease into L. donovani and generated guide RNA (gRNA) expression vectors by using the L. donovani rRNA promoter and the hepatitis delta virus (HDV) ribozyme. It is demonstrated within that L. donovani mainly used homology-directed repair (HDR) and microhomology-mediated end joining (MMEJ) to repair the Cas9 nuclease-created double-strand DNA break (DSB). The nonhomologous end-joining (NHEJ) pathway appears to be absent in L. donovani. With this CRISPR-Cas9 system, it was possible to generate knockouts without selection by insertion of an oligonucleotide donor with stop codons and 25-nucleotide homology arms into the Cas9 cleavage site. Likewise, we disrupted and precisely tagged endogenous genes by inserting a bleomycin drug selection marker and GFP gene into the Cas9 cleavage site. With the use of Hammerhead and HDV ribozymes, a double-gRNA expression vector that further improved gene-targeting efficiency was developed, and it was used to make precise deletion of the 3-kb miltefosine transporter gene (LdMT). In addition, this study identified a novel single point mutation caused by CRISPR-Cas9 in LdMT (M381T) that led to miltefosine resistance, a concern for the only available oral antileishmanial drug. Together, these results demonstrate that the CRISPR-Cas9 system represents an effective genome engineering tool for L. donovani.
Leishmania donovani is the causative agent of fatal visceral leishmaniasis. To understand Leishmania infection and pathogenesis and identify new drug targets for control of leishmaniasis, more-efficient ways to manipulate this parasite genome are required. In this study, we have implemented CRISPR-Cas9 genome-editing technology in L. donovani. Both single- and dual-gRNA expression vectors were developed using a strong RNA polymerase I promoter and ribozymes. With this system, it was possible to generate loss-of-function insertion and deletion mutations and introduce drug selection markers and the GFP sequence precisely into the L. donovani genome. These methods greatly improved the ability to manipulate this parasite genome and will help pave the way for high-throughput functional analysis of Leishmania genes. This study further revealed that double-stranded DNA breaks created by CRISPR-Cas9 were repaired by the homology-directed repair (HDR) pathway and microhomology-mediated end joining (MMEJ) in Leishmania.
原核生物的CRISPR(规律成簇间隔短回文重复序列)-Cas9是一种RNA引导的核酸内切酶,已被证明能在多种生物体中介导高效的基因组编辑。在本研究中,CRISPR-Cas9系统已被应用于杜氏利什曼原虫,这是一种导致人类致命内脏利什曼病的原生动物寄生虫。我们将Cas9核酸酶引入杜氏利什曼原虫,并利用杜氏利什曼原虫rRNA启动子和丁型肝炎病毒(HDV)核酶构建了向导RNA(gRNA)表达载体。结果表明,杜氏利什曼原虫主要利用同源定向修复(HDR)和微同源介导的末端连接(MMEJ)来修复Cas9核酸酶产生的双链DNA断裂(DSB)。杜氏利什曼原虫似乎不存在非同源末端连接(NHEJ)途径。利用这种CRISPR-Cas9系统,通过将带有终止密码子和25个核苷酸同源臂的寡核苷酸供体插入Cas9切割位点,无需筛选即可产生基因敲除。同样,我们通过将博来霉素药物选择标记和GFP基因插入Cas9切割位点,破坏并精确标记了内源基因。利用锤头状核酶和HDV核酶,开发了一种进一步提高基因靶向效率的双gRNA表达载体,并用于精确缺失3kb的米替福新转运蛋白基因(LdMT)。此外,本研究还鉴定出CRISPR-Cas9在LdMT中引起的一个新的单点突变(M381T),该突变导致米替福新耐药,这是唯一可用的口服抗利什曼病药物的一个问题。总之,这些结果表明CRISPR-Cas9系统是杜氏利什曼原虫一种有效的基因组工程工具。
杜氏利什曼原虫是致命内脏利什曼病的病原体。为了了解利什曼原虫的感染和发病机制,并确定控制利什曼病的新药物靶点,需要更有效的方法来操纵这种寄生虫的基因组。在本研究中,我们在杜氏利什曼原虫中实施了CRISPR-Cas9基因组编辑技术。利用强大的RNA聚合酶I启动子和核酶构建了单gRNA和双gRNA表达载体。利用该系统,可以产生功能缺失的插入和缺失突变,并将药物选择标记和GFP序列精确引入杜氏利什曼原虫基因组。这些方法大大提高了操纵这种寄生虫基因组的能力,并将有助于为利什曼原虫基因的高通量功能分析铺平道路。本研究进一步揭示,CRISPR-Cas9产生的双链DNA断裂在利什曼原虫中通过同源定向修复(HDR)途径和微同源介导的末端连接(MMEJ)进行修复。