Kamoen Lycka, de Bruin Dieuwertje A, Kralemann Lejon E M, Roos Kim, Wildhagen Mandy M D A, van Schendel Robin, Hooykaas Paul J J, de Pater Sylvia, Tijsterman Marcel
Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands.
Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2300 RC, The Netherlands.
PNAS Nexus. 2025 Jun 3;4(6):pgaf183. doi: 10.1093/pnasnexus/pgaf183. eCollection 2025 Jun.
To develop efficient strategies for precise mutagenesis in plants, it is crucial to characterize the mechanisms involved in the repair of CRISPR-induced double strand breaks (DSBs). Polymerase theta (Polθ)-mediated end joining (TMEJ) and classical nonhomologous end joining are key pathways that generate a wide array of mutations during DSB repair. To direct repair towards more predictable outcomes, we examined the impact of direct repeats flanking DSBs, which may trigger extended microhomology-mediated end joining (eMMEJ). Unexpectedly, we found that eMMEJ in requires Polθ, in contrast to eMMEJ in animals. By reintroducing mutated versions of Polθ into Polθ-deficient plants we discovered that only the helicase activity of Polθ is needed for eMMEJ; we demonstrate that plants lacking Polθ's polymerase domain are incapable of TMEJ and are resistant to TMEJ-dependent T-DNA integration but still support extended microhomology-guided DSB repair at genomic sites with direct repeats. These findings reveal species-specific functionality of Polθ and point to functional divergence in TMEJ across species. Additionally, these insights provide new opportunities to direct targeted mutagenesis in plants toward single, predictable outcomes, paving the way for more efficient crop engineering. Classification: Biological, Health, and Medical Sciences.
为了开发植物精确诱变的有效策略,表征CRISPR诱导的双链断裂(DSB)修复所涉及的机制至关重要。聚合酶θ(Polθ)介导的末端连接(TMEJ)和经典的非同源末端连接是在DSB修复过程中产生大量突变的关键途径。为了使修复朝着更可预测的结果进行,我们研究了DSB侧翼直接重复序列的影响,其可能触发扩展的微同源性介导的末端连接(eMMEJ)。出乎意料的是,我们发现与动物中的eMMEJ相反,植物中的eMMEJ需要Polθ。通过将Polθ的突变版本重新引入Polθ缺陷型植物中,我们发现eMMEJ仅需要Polθ的解旋酶活性;我们证明缺乏Polθ聚合酶结构域的植物不能进行TMEJ,并且对TMEJ依赖的T-DNA整合具有抗性,但仍支持在具有直接重复序列的基因组位点进行扩展的微同源性引导的DSB修复。这些发现揭示了Polθ的物种特异性功能,并指出了跨物种TMEJ中的功能差异。此外,这些见解为将植物中的靶向诱变导向单一、可预测的结果提供了新机会,为更高效的作物工程铺平了道路。分类:生物、健康和医学科学。