Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan ; Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan.
Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
FEBS Open Bio. 2015 Jun 30;5:557-70. doi: 10.1016/j.fob.2015.06.011. eCollection 2015.
Keap1 protein acts as a cellular sensor for oxidative stresses and regulates the transcription level of antioxidant genes through the ubiquitination of a corresponding transcription factor, Nrf2. A small molecule capable of binding to the Nrf2 interaction site of Keap1 could be a useful medicine. Here, we report two crystal structures, referred to as the soaking and the cocrystallization forms, of the Kelch domain of Keap1 with a small molecule, Ligand1. In these two forms, the Ligand1 molecule occupied the binding site of Keap1 so as to mimic the ETGE motif of Nrf2, although the mode of binding differed in the two forms. Because the Ligand1 molecule mediated the crystal packing in both the forms, the influence of crystal packing on the ligand binding was examined using a molecular dynamics (MD) simulation in aqueous conditions. In the MD structures from the soaking form, the ligand remained bound to Keap1 for over 20 ns, whereas the ligand tended to dissociate in the cocrystallization form. The MD structures could be classified into a few clusters that were related to but distinct from the crystal structures, indicating that the binding modes observed in crystals might be atypical of those in solution. However, the dominant ligand recognition residues in the crystal structures were commonly used in the MD structures to anchor the ligand. Therefore, the present structural information together with the MD simulation will be a useful basis for pharmaceutical drug development.
Keap1 蛋白作为细胞氧化应激传感器,通过泛素化相应的转录因子 Nrf2 来调节抗氧化基因的转录水平。能够与 Keap1 的 Nrf2 相互作用位点结合的小分子可能成为一种有用的药物。在这里,我们报告了 Kelch 结构域与小分子 Ligand1 的两种晶体结构,分别称为浸泡和共晶形式。在这两种形式中, Ligand1 分子占据了 Keap1 的结合位点,从而模拟了 Nrf2 的 ETGE 基序,尽管两种形式的结合方式不同。由于 Ligand1 分子介导了两种形式的晶体堆积,因此使用水相中的分子动力学(MD)模拟来检查晶体堆积对配体结合的影响。在来自浸泡形式的 MD 结构中,配体在超过 20ns 的时间内仍然与 Keap1 结合,而在共晶形式中配体倾向于解离。MD 结构可以分为几个与晶体结构相关但不同的簇,表明在晶体中观察到的结合模式可能不是溶液中的典型模式。然而,晶体结构中主要的配体识别残基在 MD 结构中也被用来固定配体。因此,目前的结构信息和 MD 模拟将为药物开发提供有用的基础。