Suppr超能文献

对动态网络进行抽样及其在HIV流行驱动因素调查中的应用。

Sampling dynamic networks with application to investigation of HIV epidemic drivers.

作者信息

Goyal Ravi, De Gruttola Victor

机构信息

Biostatistics, Harvard School of Public Health, Boston, MA, USA.

Biostatistics, Harvard School of Public Health, Boston, MA, USA.

出版信息

Math Biosci. 2015 Sep;267:124-33. doi: 10.1016/j.mbs.2015.06.013. Epub 2015 Jul 19.

Abstract

We propose a method for randomly sampling dynamic networks that permits isolation of the impact of different network features on processes that propagate on networks. The new methods permit uniform sampling of dynamic networks in ways that ensure that they are consistent with both a given cumulative network and with specified values for constraints on the dynamic network properties. Development of such methods is challenging because modifying one network property will generally tend to modify others as well. Methods to sample constrained dynamic networks are particularly useful in the investigation of network-based interventions that target and modify specific dynamic network properties, especially in settings where the whole network is unobservable and therefore many network properties are unmeasurable. We illustrate this method by investigating the incremental impact of changes in networks properties that are relevant for the spread of infectious diseases, such as concurrency in sexual relationships. Development of the method is motivated by the challenges that arise in investigating the role of HIV epidemic drivers due to the often limited information available about contact networks. The proposed methods for randomly sampling dynamic networks facilitate investigation of the type of network data that can best contribute to an understanding of the HIV epidemic dynamics as well as of the limitations of conclusions drawn in the absence of such information. Hence, the methods are intended to aid in the design and interpretation of studies of network-based interventions.

摘要

我们提出了一种对动态网络进行随机抽样的方法,该方法能够分离不同网络特征对在网络上传播的过程的影响。新方法允许以确保与给定的累积网络以及动态网络属性约束的指定值相一致的方式对动态网络进行均匀抽样。开发此类方法具有挑战性,因为修改一个网络属性通常也会倾向于修改其他属性。对受约束的动态网络进行抽样的方法在针对并修改特定动态网络属性的基于网络的干预措施研究中特别有用,尤其是在整个网络不可观测且因此许多网络属性无法测量的情况下。我们通过研究与传染病传播相关的网络属性变化的增量影响(例如性关系中的并发情况)来说明此方法。该方法的开发是出于在研究艾滋病毒流行驱动因素的作用时所面临的挑战,这是由于关于接触网络的可用信息往往有限。所提出的对动态网络进行随机抽样的方法有助于研究哪种类型的网络数据最有助于理解艾滋病毒流行动态以及在缺乏此类信息的情况下得出的结论的局限性。因此,这些方法旨在帮助设计和解释基于网络的干预措施的研究。

相似文献

1
Sampling dynamic networks with application to investigation of HIV epidemic drivers.
Math Biosci. 2015 Sep;267:124-33. doi: 10.1016/j.mbs.2015.06.013. Epub 2015 Jul 19.
2
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.
Phys Rev Lett. 2017 Sep 8;119(10):108301. doi: 10.1103/PhysRevLett.119.108301. Epub 2017 Sep 6.
3
Concurrency can drive an HIV epidemic by moving R0 across the epidemic threshold.
AIDS. 2015 Jun 1;29(9):1097-103. doi: 10.1097/QAD.0000000000000676.
4
Inference on network statistics by restricting to the network space: applications to sexual history data.
Stat Med. 2018 Jan 30;37(2):218-235. doi: 10.1002/sim.7393. Epub 2017 Jul 25.
5
Pathogen spread on coupled networks: effect of host and network properties on transmission thresholds.
J Theor Biol. 2013 Mar 7;320:47-57. doi: 10.1016/j.jtbi.2012.12.006. Epub 2012 Dec 14.
6
Phylodynamics on local sexual contact networks.
PLoS Comput Biol. 2017 Mar 28;13(3):e1005448. doi: 10.1371/journal.pcbi.1005448. eCollection 2017 Mar.
7
Concurrency measures in the era of temporal network epidemiology: a review.
J R Soc Interface. 2021 Jun;18(179):20210019. doi: 10.1098/rsif.2021.0019. Epub 2021 Jun 2.
8
Large-scale properties of clustered networks: implications for disease dynamics.
J Biol Dyn. 2010 Sep;4(5):431-45. doi: 10.1080/17513758.2010.487158.
9
Polynomial epidemics and clustering in contact networks.
Proc Biol Sci. 2004 Aug 7;271 Suppl 5(Suppl 5):S364-6. doi: 10.1098/rsbl.2004.0188.
10
Untangling the Interplay between Epidemic Spread and Transmission Network Dynamics.
PLoS Comput Biol. 2010 Nov 18;6(11):e1000984. doi: 10.1371/journal.pcbi.1000984.

引用本文的文献

1
Dynamic Network Prediction.
Netw Sci (Camb Univ Press). 2020 Dec;8(4):574-595. doi: 10.1017/nws.2020.24. Epub 2020 Jul 9.

本文引用的文献

1
Size matters: concurrency and the epidemic potential of HIV in small networks.
PLoS One. 2012;7(8):e43048. doi: 10.1371/journal.pone.0043048. Epub 2012 Aug 24.
4
Role of concurrency in generalised HIV epidemics.
Lancet. 2011 Nov 26;378(9806):1843-4; author reply 1845-6. doi: 10.1016/S0140-6736(11)61803-5.
5
HIV and concurrent sexual partnerships: modelling the role of coital dilution.
J Int AIDS Soc. 2011 Sep 13;14:44. doi: 10.1186/1758-2652-14-44.
8
Concurrent sexual partnerships and primary HIV infection: a critical interaction.
AIDS Behav. 2011 May;15(4):687-92. doi: 10.1007/s10461-010-9787-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验