Rasmussen David A, Kouyos Roger, Günthard Huldrych F, Stadler Tanja
Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.
PLoS Comput Biol. 2017 Mar 28;13(3):e1005448. doi: 10.1371/journal.pcbi.1005448. eCollection 2017 Mar.
Phylodynamic models are widely used in infectious disease epidemiology to infer the dynamics and structure of pathogen populations. However, these models generally assume that individual hosts contact one another at random, ignoring the fact that many pathogens spread through highly structured contact networks. We present a new framework for phylodynamics on local contact networks based on pairwise epidemiological models that track the status of pairs of nodes in the network rather than just individuals. Shifting our focus from individuals to pairs leads naturally to coalescent models that describe how lineages move through networks and the rate at which lineages coalesce. These pairwise coalescent models not only consider how network structure directly shapes pathogen phylogenies, but also how the relationship between phylogenies and contact networks changes depending on epidemic dynamics and the fraction of infected hosts sampled. By considering pathogen phylogenies in a probabilistic framework, these coalescent models can also be used to estimate the statistical properties of contact networks directly from phylogenies using likelihood-based inference. We use this framework to explore how much information phylogenies retain about the underlying structure of contact networks and to infer the structure of a sexual contact network underlying a large HIV-1 sub-epidemic in Switzerland.
系统动力学模型在传染病流行病学中被广泛用于推断病原体种群的动态和结构。然而,这些模型通常假定个体宿主之间随机接触,而忽略了许多病原体通过高度结构化的接触网络传播这一事实。我们基于成对流行病学模型提出了一种用于局部接触网络系统动力学的新框架,该模型跟踪网络中节点对的状态而非仅仅是个体的状态。将我们的关注点从个体转移到节点对自然地引出了合并模型,该模型描述了谱系如何在网络中移动以及谱系合并的速率。这些成对合并模型不仅考虑网络结构如何直接塑造病原体系统发育,还考虑系统发育与接触网络之间的关系如何根据疫情动态和采样感染宿主的比例而变化。通过在概率框架中考虑病原体系统发育,这些合并模型还可用于使用基于似然性的推断直接从系统发育估计接触网络的统计特性。我们使用这个框架来探索系统发育保留了多少关于接触网络潜在结构的信息,并推断瑞士一次大型HIV-1子疫情背后的性接触网络结构。