Institut de Mécanique et d'Ingénierie (I2 M, CNRS UMR 5295), Université de Bordeaux, 146 rue Léo Saignat (case 15), Laboratoire de pharmacie galénique et biopharmacie, Bâtiment pharmacie 1(ère) tranche, 3(ème) étage, F-33076 Bordeaux cedex, France; Université Paris Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
Institut de Mécanique et d'Ingénierie (I2 M, CNRS UMR 5295), Université de Bordeaux, 146 rue Léo Saignat (case 15), Laboratoire de pharmacie galénique et biopharmacie, Bâtiment pharmacie 1(ère) tranche, 3(ème) étage, F-33076 Bordeaux cedex, France.
Int J Pharm. 2015 Sep 30;493(1-2):121-8. doi: 10.1016/j.ijpharm.2015.07.030. Epub 2015 Jul 19.
Finite elements method was used to study the influence of tablet thickness and punch curvature on the density distribution inside convex faced (CF) tablets. The modeling of the process was conducted on 2 pharmaceutical excipients (anhydrous calcium phosphate and microcrystalline cellulose) by using Drucker-Prager Cap model in Abaqus(®) software. The parameters of the model were obtained from experimental tests. Several punch shapes based on industrial standards were used. A flat-faced (FF) punch and 3 convex faced (CF) punches (8R11, 8R8 and 8R6) with a diameter of 8mm were chosen. Different tablet thicknesses were studied at a constant compression force. The simulation of the compaction of CF tablets with increasing thicknesses showed an important change on the density distribution inside the tablet. For smaller thicknesses, low density zones are located toward the center. The density is not uniform inside CF tablets and the center of the 2 faces appears with low density whereas the distribution inside FF tablets is almost independent of the tablet thickness. These results showed that FF and CF tablets, even obtained at the same compression force, do not have the same density at the center of the compact. As a consequence differences in tensile strength, as measured by diametral compression, are expected. This was confirmed by experimental tests.
采用有限元法研究了片剂厚度和冲头曲率对凸面(CF)片剂内部密度分布的影响。该过程的建模是在 2 种药物赋形剂(无水磷酸钙和微晶纤维素)上进行的,使用了 Abaqus(®)软件中的 Drucker-Prager Cap 模型。模型的参数是从实验测试中获得的。使用了几种基于工业标准的冲头形状。选择了直径为 8mm 的平冲头(FF)和 3 种凸冲头(CF)(8R11、8R8 和 8R6)。在恒定压缩力下研究了不同的片剂厚度。随着厚度的增加,对 CF 片剂的压缩模拟显示出片剂内部密度分布的重要变化。对于较小的厚度,低密度区域位于中心。CF 片剂内部的密度不均匀,2 个面的中心区域密度较低,而 FF 片剂内部的分布几乎与片剂厚度无关。这些结果表明,即使在相同的压缩力下获得的 FF 和 CF 片剂,其片剂中心的密度也不相同。因此,预计拉伸强度(通过直径压缩测量)会有所不同。这一点通过实验测试得到了证实。