Leng Chunbo, Kish J Duncan, Roberts Jason E, Dwebi Iman, Chon Nara, Liu Yong
Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States.
J Phys Chem A. 2015 Aug 20;119(33):8884-91. doi: 10.1021/acs.jpca.5b05174. Epub 2015 Aug 11.
There has been growing interest in understanding atmospheric amines in the gas phase and their mass transfer to the aqueous phase because of their potential roles in cloud chemistry, secondary organic aerosol formation, and the fate of atmospheric organics. Temperature-dependent Henry's law constants (KH) of atmospheric amines, a key parameter in atmospheric chemical transport models to account for mass transfer, are mostly unavailable. In this work, we investigated gas-liquid equilibria of five prevalent atmospheric amines, namely 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine using bubble column technique. We reported effective KH, intrinsic KH, and gas phase diffusion coefficients of these species over a range of temperatures relevant to the lower atmosphere for the first time. The measured KH at 298 K and enthalpy of solution for 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine are 61.4 ± 4.9 mol L(-1) atm(-1) and -49.0 ± 4.8 kJ mol(-1); 14.5 ± 1.2 mol L(-1) atm(-1) and -72.5 ± 6.8 kJ mol(-1); 8.9 ± 0.7 mol L(-1) atm(-1) and -49.6 ± 4.7 kJ mol(-1); 103.5 ± 10.4 mol L(-1) atm(-1) and -42.7 ± 4.3 kJ mol(-1); and 952.2 ± 114.3 mol L(-1) atm(-1) and -82.7 ± 9.7 kJ mol(-1), respectively. In addition, we evaluated amines' characteristic times to achieve gas-liquid equilibrium for partitioning between gas and aqueous phases. Results show gas-liquid equilibrium can be rapidly established at natural cloud droplets surface, but the characteristic times may be extended substantially at lower temperatures and pHs. Moreover, our findings imply that atmospheric amines are more likely to exist in cloud droplets, and ambient temperature, water content, and pH of aerosols play important roles in their partitioning.
由于大气胺在云化学、二次有机气溶胶形成以及大气有机物归宿中可能发挥的作用,人们对理解气相中的大气胺及其向水相的传质越来越感兴趣。大气化学传输模型中用于描述传质的一个关键参数——大气胺的温度依赖型亨利定律常数(KH)大多未知。在这项工作中,我们使用鼓泡塔技术研究了五种常见大气胺,即正丙胺、二正丙胺、三甲胺、烯丙胺和4-甲基吗啉的气液平衡。我们首次报告了这些物质在与低层大气相关的一系列温度范围内的有效KH、固有KH和气相传质系数。在298 K下测得的正丙胺、二正丙胺、三甲胺、烯丙胺和4-甲基吗啉的KH以及溶解焓分别为61.4±4.9 mol·L⁻¹·atm⁻¹和 -49.0±4.8 kJ·mol⁻¹;14.5±1.2 mol·L⁻¹·atm⁻¹和 -72.5±6.8 kJ·mol⁻¹;8.9±0.7 mol·L⁻¹·atm⁻¹和 -49.6±4.7 kJ·mol⁻¹;103.5±10.4 mol·L⁻¹·atm⁻¹和 -42.7±4.3 kJ·mol⁻¹;以及952.2±114.3 mol·L⁻¹·atm⁻¹和 -82.7±9.7 kJ·mol⁻¹。此外,我们评估了胺在气液相间达到分配平衡的特征时间。结果表明,在天然云滴表面气液平衡能够快速建立,但在较低温度和pH值下特征时间可能会大幅延长。此外,我们的研究结果表明大气胺更有可能存在于云滴中,并且环境温度、气溶胶含水量和pH值在它们的分配过程中起着重要作用。