Brun Nicolas, González-Sánchez Juan Miguel, Ravier Sylvain, Temime-Roussel Brice, Brigante Marcello, Mailhot Gilles, Clément Jean-Louis, Monod Anne
Aix Marseille Univ, CNRS, LCE, Marseille, France; Aix Marseille Univ, CNRS, ICR, Marseille, France.
Aix Marseille Univ, CNRS, LCE, Marseille, France; Aix Marseille Univ, CNRS, ICR, Marseille, France.
Talanta. 2024 Aug 15;276:126176. doi: 10.1016/j.talanta.2024.126176. Epub 2024 May 1.
Chemical processes in clouds have been suggested to contribute significantly to the mass of organic aerosol particles in the atmosphere. Experimental and theoretical evidence suggest that organic mass production in clouds can be substantial and depends on the concentration of organic precursor compounds available in the gas phase. The present study aims at studying the aqueous phase reactivity of one of these overlooked precursors, i.e. 2,4-hexadienedial, an important and toxic intermediate in the atmospheric oxidation of aromatic species. Cautious synthesis and purification of 2,4-hexadienedial was performed. Its effective Henry's law constant was measured using a new simple and fast method based on online flow-injection analysis. The reactivity of 2,4-hexadienedial in the aqueous phase relevant to atmospheric conditions was studied, including hydrate formation, photolysis, ∙OH- and SO∙-oxidation as well as reaction with NH. The results revealed a low hydration constant compared to other dicarbonyls (K = 7 × 10) and no dihydrate formation, indicating in an intermediate solubility (K = 1.0 × 10 M atm) and high absorption cross sections (σ > 10 cm molecule). Compared to its gas phase photolysis, its aqueous phase photolysis showed low quantum yields (Φ = 0.9 %), and a significant red shift of the absorbance maximum, leading to a fast aqueous photolysis kinetics (J = 8.7 × 10 s) under atmospheric solar radiation, but no triplet state formation was detected. Radical oxidation experiments revealed extremely rapid oxidation kinetics (k = 1.10 × 10 M s and k∙ = 1.4 × 10 M s) driven by fast addition of the radicals to the unsaturated bonds. In contrast, the reaction with aqueous NH (k = 2.6 × 10 M s) was found slower than glyoxal and 2-butenedial, likely due to the hyperconjugation of 2,4-hexadienedial. Using these new data complemented with assumed aqueous phase kinetics (for NO, C* and O reactions) and previous gas-phase kinetic ones, the multiphase atmospheric fate of 2,4-hexadienedial was established under atmospheric conditions reported from previous field measurements and models. The results revealed a short day lifetime (∼1 h) and a long night lifetime (>12 h). It was shown that daytime atmospheric chemistry of 2,4-hexadienedial can be influenced by aqueous-phase reactivity during cloud events, up to ∼50 % under thick cloud conditions (Liquid Water Content >2000 g/m), indicating that even a compound of intermediate solubility can be strongly affected by condensed-phase reactivity. Besides its fast aqueous phase reactivity towards ∙OH and photolysis, its daytime condensed-phase reactivity may be driven by reactions with dissolved triplet states (C*), up to 35 %, highlighting the need to study further the kinetics, the nature and concentrations of dissolved C* under various atmospheric conditions. In addition, the molecular properties and atmospheric behavior of 2,4-hexadienedial were found different from those of glyoxal and 2-butenedial, highlighting the need for detailed atmospheric reactivity studies of polyfunctional compounds, in particular unsaturated compounds.
云团中的化学过程被认为对大气中有机气溶胶颗粒的质量有显著贡献。实验和理论证据表明,云团中有机物的生成量可能很大,且取决于气相中有机前体化合物的浓度。本研究旨在研究一种被忽视的前体物质——2,4 -己二烯二醛在水相中的反应活性,它是芳香族物质大气氧化过程中的一种重要且有毒的中间体。我们对2,4 -己二烯二醛进行了谨慎的合成与提纯。采用一种基于在线流动注射分析的新型简单快速方法测定了其有效亨利定律常数。研究了2,4 -己二烯二醛在与大气条件相关的水相中的反应活性,包括水合物形成、光解、·OH和SO·氧化以及与NH的反应。结果表明,与其他二羰基化合物相比,其水合常数较低(K = 7×10)且未形成二水合物,这表明其具有中等溶解度(K = 1.0×10 M atm)和高吸收截面(σ > 10 cm molecule)。与气相光解相比,其水相光解的量子产率较低(Φ = 0.9%),且最大吸收波长有显著红移,导致在大气太阳辐射下具有较快的水相光解动力学(J = 8.7×10 s),但未检测到三重态的形成。自由基氧化实验表明,由于自由基快速加成到不饱和键上,氧化动力学极快(k = 1.10×10 M s和k∙ = 1.4×10 M s)。相比之下,发现其与水相NH的反应(k = 2.6×10 M s)比乙二醛和2 -丁烯二醛慢,这可能是由于2,4 -己二烯二醛的超共轭作用。利用这些新数据,并结合假定的水相动力学(针对NO、C和O反应)以及先前的气相动力学数据,在先前实地测量和模型报告的大气条件下确定了2,4 -己二烯二醛在大气中的多相归宿。结果显示其白天寿命较短(约1小时),夜间寿命较长(>12小时)。研究表明,在云团事件期间,2,4 -己二烯二醛的白天大气化学过程可能受到水相反应活性的影响,在厚云条件下(液态水含量>2000 g/m)影响程度可达约50%,这表明即使是一种中等溶解度的化合物也可能受到凝聚相反应活性的强烈影响。除了其对·OH和光解的快速水相反应活性外,其白天的凝聚相反应活性可能由与溶解的三重态(C)的反应驱动,最高可达35%,这突出了需要进一步研究在各种大气条件下溶解的C*的动力学、性质和浓度。此外,发现2,4 -己二烯二醛的分子性质和大气行为与乙二醛和2 -丁烯二醛不同,这突出了对多官能团化合物,特别是不饱和化合物进行详细大气反应活性研究的必要性。