Suppr超能文献

尽管基因网络模型中存在上位性限制,但基因表达对噪声的鲁棒性仍在进化。

Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks.

作者信息

Draghi Jeremy, Whitlock Michael

机构信息

Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

出版信息

Evolution. 2015 Sep;69(9):2345-58. doi: 10.1111/evo.12732. Epub 2015 Aug 27.

Abstract

Stochastic noise in gene expression causes variation in the development of phenotypes, making such noise a potential target of stabilizing selection. Here, we develop a new simulation model of gene networks to study the adaptive landscape underlying the evolution of robustness to noise. We find that epistatic interactions between the determinants of the expression of a gene and its downstream effect impose significant constraints on evolution, but these interactions do allow the gradual evolution of increased robustness. Despite strong sign epistasis, adaptation rarely proceeds via deleterious intermediate steps, but instead occurs primarily through small beneficial mutations. A simple mathematical model captures the relevant features of the single-gene fitness landscape and explains counterintuitive patterns, such as a correlation between the mean and standard deviation of phenotypes. In more complex networks, mutations in regulatory regions provide evolutionary pathways to increased robustness. These results chart the constraints and possibilities of adaptation to reduce expression noise and demonstrate the potential of a novel modeling framework for gene networks.

摘要

基因表达中的随机噪声会导致表型发育的变化,使这种噪声成为稳定选择的潜在目标。在此,我们开发了一种新的基因网络模拟模型,以研究噪声鲁棒性进化背后的适应性景观。我们发现,基因表达决定因素与其下游效应之间的上位性相互作用对进化施加了重大限制,但这些相互作用确实允许鲁棒性的逐渐进化。尽管存在强烈的符号上位性,但适应很少通过有害的中间步骤进行,而是主要通过小的有益突变发生。一个简单的数学模型捕捉了单基因适应度景观的相关特征,并解释了诸如表型均值与标准差之间的相关性等违反直觉的模式。在更复杂的网络中,调控区域的突变提供了增加鲁棒性的进化途径。这些结果描绘了适应以减少表达噪声的限制和可能性,并展示了一种新型基因网络建模框架的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验