Suppr超能文献

高胆固醇消除了快速SNARE介导的膜融合过程中延长的半融合中间体。

High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion.

作者信息

Kreutzberger Alex J B, Kiessling Volker, Tamm Lukas K

机构信息

Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.

Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.

出版信息

Biophys J. 2015 Jul 21;109(2):319-29. doi: 10.1016/j.bpj.2015.06.022.

Abstract

Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays.

摘要

胆固醇对于分泌细胞的胞吐作用至关重要,但其促进胞吐作用的确切分子机制仍不清楚。区分膜蛋白的侧向组织和动力学对囊泡对接与融合的贡献,以及胆固醇的负固有自发曲率和其他机械效应促进融合孔形成的作用一直难以实现。为了更深入了解这一过程,我们在单囊泡测定中研究了胆固醇对SNARE介导的膜融合的影响,该测定能够以毫秒级时间分辨率解析对接和融合的基本步骤。使用膜荧光标记物和内容物荧光标记物,研究了胆固醇对含突触小泡蛋白-2(VAMP-2)的蛋白脂质体与含受体t-SNARE复合物的平面支撑双层膜之间融合孔形成的影响。该方法表明,增加t-SNARE或v-SNARE膜中的胆固醇有利于直接融合孔开放机制,而低胆固醇则有利于导致长寿命(>5 s)半融合状态的机制。靶膜中胆固醇的含量对突触小泡蛋白囊泡的对接没有显著影响。与α-生育酚(维生素E)的比较研究表明,胆固醇的负固有自发曲率及其推测促进的非常短寿命(<50 ms)脂质柄中间体是高胆固醇时有利于快速融合孔开放的主要因素。这项研究还表明,这种单囊泡融合测定仅用一种脂质染料就能区分半融合和完全融合,从而在快速时间分辨融合测定中腾出一个荧光通道用于同时测量另一个参数。

相似文献

1
High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion.
Biophys J. 2015 Jul 21;109(2):319-29. doi: 10.1016/j.bpj.2015.06.022.
2
SNARE-Mediated Single-Vesicle Fusion Events with Supported and Freestanding Lipid Membranes.
Biophys J. 2017 Jun 6;112(11):2348-2356. doi: 10.1016/j.bpj.2017.04.032.
3
Fusion step-specific influence of cholesterol on SNARE-mediated membrane fusion.
Biophys J. 2009 Mar 4;96(5):1839-46. doi: 10.1016/j.bpj.2008.11.033.
6
Dynamic light scattering analysis of SNARE-driven membrane fusion and the effects of SNARE-binding flavonoids.
Biochem Biophys Res Commun. 2015 Oct 2;465(4):864-70. doi: 10.1016/j.bbrc.2015.08.111. Epub 2015 Aug 28.
7
Reconstituting SNARE-mediated membrane fusion at the single liposome level.
Methods Cell Biol. 2015;128:339-63. doi: 10.1016/bs.mcb.2015.02.005. Epub 2015 Apr 8.
8
Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion.
J Biol Chem. 2009 Nov 13;284(46):32158-66. doi: 10.1074/jbc.M109.047381. Epub 2009 Sep 15.
9
Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region.
Biochim Biophys Acta. 2016 Apr;1858(4):855-65. doi: 10.1016/j.bbamem.2016.01.030. Epub 2016 Feb 4.
10
Assembly and Comparison of Plasma Membrane SNARE Acceptor Complexes.
Biophys J. 2016 May 24;110(10):2147-50. doi: 10.1016/j.bpj.2016.04.011. Epub 2016 May 10.

引用本文的文献

2
Functionally distinct SNARE motifs of SNAP25 cooperate in SNARE assembly and membrane fusion.
Biophys J. 2025 Feb 18;124(4):637-650. doi: 10.1016/j.bpj.2024.12.034. Epub 2024 Dec 31.
3
Mechanistic Insights into Synaptotagmin-1 Mediated Membrane Fusion and Interactions.
Methods Mol Biol. 2025;2887:207-226. doi: 10.1007/978-1-0716-4314-3_15.
4
Breaking free: endocytosis and endosomal escape of extracellular vesicles.
Extracell Vesicles Circ Nucl Acids. 2023 Jun 30;4(2):283-305. doi: 10.20517/evcna.2023.26. eCollection 2023.
5
Cholesterol imbalance and neurotransmission defects in neurodegeneration.
Exp Mol Med. 2024 Aug;56(8):1685-1690. doi: 10.1038/s12276-024-01273-4. Epub 2024 Aug 1.
6
Mechanisms of SNARE proteins in membrane fusion.
Nat Rev Mol Cell Biol. 2024 Feb;25(2):101-118. doi: 10.1038/s41580-023-00668-x. Epub 2023 Oct 17.
7
Pathogen vacuole membrane contact sites - close encounters of the fifth kind.
Microlife. 2023 Apr 7;4:uqad018. doi: 10.1093/femsml/uqad018. eCollection 2023.
8
Direct determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer.
Nat Methods. 2023 Jun;20(6):891-897. doi: 10.1038/s41592-023-01864-5. Epub 2023 Apr 27.
9
Requirement of Cholesterol for Calcium-Dependent Vesicle Fusion by Strengthening Synaptotagmin-1-Induced Membrane Bending.
Adv Sci (Weinh). 2023 May;10(15):e2206823. doi: 10.1002/advs.202206823. Epub 2023 Apr 14.
10
Drunken lipid membranes, not drunken SNARE proteins, promote fusion in a model of neurotransmitter release.
Front Mol Neurosci. 2022 Oct 14;15:1022756. doi: 10.3389/fnmol.2022.1022756. eCollection 2022.

本文引用的文献

1
Reconstituting SNARE-mediated membrane fusion at the single liposome level.
Methods Cell Biol. 2015;128:339-63. doi: 10.1016/bs.mcb.2015.02.005. Epub 2015 Apr 8.
2
Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins.
Crit Rev Biochem Mol Biol. 2015;50(3):231-41. doi: 10.3109/10409238.2015.1023252. Epub 2015 Mar 19.
3
Variable cooperativity in SNARE-mediated membrane fusion.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12037-42. doi: 10.1073/pnas.1407435111. Epub 2014 Aug 4.
4
The principle of membrane fusion in the cell (Nobel lecture).
Angew Chem Int Ed Engl. 2014 Nov 17;53(47):12676-94. doi: 10.1002/anie.201402380. Epub 2014 Aug 1.
5
The SNARE motif of synaptobrevin exhibits an aqueous-interfacial partitioning that is modulated by membrane curvature.
Biochemistry. 2014 Mar 11;53(9):1485-94. doi: 10.1021/bi401638u. Epub 2014 Feb 28.
6
Prefusion structure of syntaxin-1A suggests pathway for folding into neuronal trans-SNARE complex fusion intermediate.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19384-9. doi: 10.1073/pnas.1314699110. Epub 2013 Nov 11.
7
Microdomains of SNARE proteins in the plasma membrane.
Curr Top Membr. 2013;72:193-230. doi: 10.1016/B978-0-12-417027-8.00006-4.
8
Neurotransmitter release: the last millisecond in the life of a synaptic vesicle.
Neuron. 2013 Oct 30;80(3):675-90. doi: 10.1016/j.neuron.2013.10.022.
9
Individual vesicle fusion events mediated by lipid-anchored DNA.
Biophys J. 2013 Jul 16;105(2):409-19. doi: 10.1016/j.bpj.2013.05.056.
10
Rapid fusion of synaptic vesicles with reconstituted target SNARE membranes.
Biophys J. 2013 May 7;104(9):1950-8. doi: 10.1016/j.bpj.2013.03.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验