Suppr超能文献

多传感器超分辨率融合距离成像及其在三维内窥镜和开放手术中的应用。

Multi-sensor super-resolution for hybrid range imaging with application to 3-D endoscopy and open surgery.

机构信息

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Erlangen Graduate School in Advanced Optical Technologies (SAOT), Germany.

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.

出版信息

Med Image Anal. 2015 Aug;24(1):220-234. doi: 10.1016/j.media.2015.06.011. Epub 2015 Jul 3.

Abstract

In this paper, we propose a multi-sensor super-resolution framework for hybrid imaging to super-resolve data from one modality by taking advantage of additional guidance images of a complementary modality. This concept is applied to hybrid 3-D range imaging in image-guided surgery, where high-quality photometric data is exploited to enhance range images of low spatial resolution. We formulate super-resolution based on the maximum a-posteriori (MAP) principle and reconstruct high-resolution range data from multiple low-resolution frames and complementary photometric information. Robust motion estimation as required for super-resolution is performed on photometric data to derive displacement fields of subpixel accuracy for the associated range images. For improved reconstruction of depth discontinuities, a novel adaptive regularizer exploiting correlations between both modalities is embedded to MAP estimation. We evaluated our method on synthetic data as well as ex-vivo images in open surgery and endoscopy. The proposed multi-sensor framework improves the peak signal-to-noise ratio by 2 dB and structural similarity by 0.03 on average compared to conventional single-sensor approaches. In ex-vivo experiments on porcine organs, our method achieves substantial improvements in terms of depth discontinuity reconstruction.

摘要

在本文中,我们提出了一种用于混合成像的多传感器超分辨率框架,通过利用互补模式的额外引导图像,从一种模式的数据中进行超分辨率处理。这一概念应用于图像引导手术中的混合 3D 距离成像,利用高质量的光度数据来增强低空间分辨率的距离图像。我们基于最大后验概率 (MAP) 原理来构建超分辨率,并从多个低分辨率帧和互补光度信息中重建高分辨率的距离数据。对于超分辨率所需的稳健运动估计,我们在光度数据上执行,以获得亚像素精度的位移场,用于相关的距离图像。为了改进深度不连续性的重建,我们嵌入了一种新的自适应正则化项,利用两种模式之间的相关性进行 MAP 估计。我们在合成数据以及开放手术和内窥镜检查中的离体图像上评估了我们的方法。与传统的单传感器方法相比,所提出的多传感器框架在峰值信噪比方面提高了 2dB,在结构相似性方面提高了 0.03。在猪器官的离体实验中,我们的方法在深度不连续性重建方面取得了显著的改进。

相似文献

7
New learning based super-resolution: use of DWT and IGMRF prior.基于新学习的超分辨率:使用 DWT 和 IGMRF 先验。
IEEE Trans Image Process. 2010 May;19(5):1201-13. doi: 10.1109/TIP.2010.2041408. Epub 2010 Jan 26.
9
A weighted optimization approach to time-of-flight sensor fusion.一种基于加权优化的飞行时间传感器融合方法。
IEEE Trans Image Process. 2014 Jan;23(1):214-25. doi: 10.1109/TIP.2013.2287613. Epub 2013 Oct 28.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验