Suppr超能文献

基于超体素置信传播不确定性估计的可变形图像配准。

Deformable image registration by combining uncertainty estimates from supervoxel belief propagation.

机构信息

Institute of Medical Informatics, Universität zu Lübeck, Germany.

Centre for Medical Image Computing, University College London, UK.

出版信息

Med Image Anal. 2016 Jan;27:57-71. doi: 10.1016/j.media.2015.09.005. Epub 2015 Oct 19.

Abstract

Discrete optimisation strategies have a number of advantages over their continuous counterparts for deformable registration of medical images. For example: it is not necessary to compute derivatives of the similarity term; dense sampling of the search space reduces the risk of becoming trapped in local optima; and (in principle) an optimum can be found without resorting to iterative coarse-to-fine warping strategies. However, the large complexity of high-dimensional medical data renders a direct voxel-wise estimation of deformation vectors impractical. For this reason, previous work on medical image registration using graphical models has largely relied on using a parameterised deformation model and on the use of iterative coarse-to-fine optimisation schemes. In this paper, we propose an approach that enables accurate voxel-wise deformable registration of high-resolution 3D images without the need for intermediate image warping or a multi-resolution scheme. This is achieved by representing the image domain as multiple comprehensive supervoxel layers and making use of the full marginal distribution of all probable displacement vectors after inferring regularity of the deformations using belief propagation. The optimisation acts on the coarse scale representation of supervoxels, which provides sufficient spatial context and is robust to noise in low contrast areas. Minimum spanning trees, which connect neighbouring supervoxels, are employed to model pair-wise deformation dependencies. The optimal displacement for each voxel is calculated by considering the probabilities for all displacements over all overlapping supervoxel graphs and subsequently seeking the mode of this distribution. We demonstrate the applicability of this concept for two challenging applications: first, for intra-patient motion estimation in lung CT scans; and second, for atlas-based segmentation propagation of MRI brain scans. For lung registration, the voxel-wise mode of displacements is found using the mean-shift algorithm, which enables us to determine continuous valued sub-voxel motion vectors. Finding the mode of brain segmentation labels is performed using a voxel-wise majority voting weighted by the displacement uncertainty estimates. Our experimental results show significant improvements in registration accuracy when using the additional information provided by the registration uncertainty estimates. The multi-layer approach enables fusion of multiple complementary proposals, extending the popular fusion approaches from multi-image registration to probabilistic one-to-one image registration.

摘要

离散优化策略在医学图像的可变形配准方面相对于连续对应策略具有许多优势。例如:不需要计算相似性项的导数;密集采样搜索空间降低了陷入局部最优的风险;并且(原则上)可以找到最优解而无需采用迭代粗到细的变形策略。然而,高维医学数据的复杂性使得直接对变形向量进行体素估计变得不切实际。出于这个原因,以前使用图形模型进行医学图像配准的工作主要依赖于使用参数化变形模型和迭代粗到细的优化方案。在本文中,我们提出了一种方法,无需中间图像变形或多分辨率方案即可实现高分辨率 3D 图像的精确体素可变形配准。这是通过将图像域表示为多个综合超体素层并利用在使用置信传播推断变形的正则性之后所有可能的位移向量的完整边缘分布来实现的。优化作用于超体素的粗尺度表示,该表示提供了足够的空间上下文,并且对低对比度区域的噪声具有鲁棒性。连接相邻超体素的最小生成树用于建模成对变形依赖性。通过考虑所有重叠超体素图上的所有位移的概率来计算每个体素的最佳位移,然后寻求该分布的模式。我们展示了这个概念在两个具有挑战性的应用中的适用性:首先,用于肺 CT 扫描中的患者内运动估计;其次,用于 MRI 脑扫描的图谱分割传播。对于肺配准,使用均值漂移算法找到位移的体素模式,这使我们能够确定连续的子体素运动向量。使用位移不确定性估计加权的体素多数投票来找到脑分割标签的模式。我们的实验结果表明,使用配准不确定性估计提供的附加信息可以显著提高配准精度。多层方法能够融合多个互补的建议,将流行的多图像配准融合方法扩展到概率一对一图像配准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验