Singh Abanish, Babyak Michael A, Brummett Beverly H, Jiang Rong, Watkins Lana L, Barefoot John C, Kraus William E, Shah Svati H, Siegler Ilene C, Hauser Elizabeth R, Williams Redford B
Behavioral Medicine Research Center, Duke University Medical Center, Durham, North Carolina, United States of America.
Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, United States of America.
Genet Epidemiol. 2015 Sep;39(6):489-97. doi: 10.1002/gepi.21910. Epub 2015 Jul 22.
Chronic psychosocial stress adversely affects health and is associated with the development of disease [Williams, 2008]. Systematic epidemiological and genetic studies are needed to uncover genetic variants that interact with stress to modify metabolic responses across the life cycle that are the proximal contributors to the development of cardiovascular disease and precipitation of acute clinical events. Among the central challenges in the field are to perform and replicate gene-by-environment (G × E) studies. The challenge of measurement of individual experience of psychosocial stress is magnified in this context. Although many research datasets exist that contain genotyping and disease-related data, measures of psychosocial stress are often either absent or vary substantially across studies. In this paper, we provide an algorithm to create a synthetic measure of chronic psychosocial stress across multiple datasets, applying a consistent criterion that uses proxy indicators of stress components. We validated the computed scores of chronic psychosocial stress by observing moderately strong and significant correlations with the self-rated chronic psychosocial stress in the Multi-Ethnic Study of Atherosclerosis Cohort (Rho = 0.23, P < 0.0001) and with the measures of depressive symptoms in five datasets (Rho = 0.15-0.42, Ps = 0.005 to <0.0001) and by comparing the distributions of the self-rated and computed measures. Finally, we demonstrate the utility of this computed chronic psychosocial stress variable by providing three additional replications of our previous finding of gene-by-stress interaction with central obesity traits [Singh et al., 2015].
慢性心理社会压力对健康有不利影响,并与疾病的发生有关[威廉姆斯,2008年]。需要进行系统的流行病学和遗传学研究,以发现与压力相互作用的基因变异,从而改变整个生命周期中的代谢反应,而这些反应是心血管疾病发生和急性临床事件发作的直接原因。该领域的主要挑战之一是进行并重复基因-环境(G×E)研究。在这种情况下,测量心理社会压力个体经历的挑战被放大了。尽管存在许多包含基因分型和疾病相关数据的研究数据集,但心理社会压力的测量方法往往要么缺失,要么在不同研究中差异很大。在本文中,我们提供了一种算法,通过应用使用压力成分替代指标的一致标准,在多个数据集中创建慢性心理社会压力的综合测量指标。我们通过观察与动脉粥样硬化多族裔研究队列中自我报告的慢性心理社会压力之间适度强且显著的相关性(Rho = 0.23,P < 0.0001)以及与五个数据集中抑郁症状测量指标之间的相关性(Rho = 0.15 - 0.42,P值从0.005到<0.0001),并比较自我报告和计算指标的分布,验证了计算出的慢性心理社会压力得分。最后,我们通过提供我们之前关于基因与压力相互作用与中心性肥胖特征研究结果的另外三个重复验证,证明了这个计算出的慢性心理社会压力变量的效用[辛格等人,2015年]。